Article

Article name BIOMORPHOLOGICAL TRAITS AND LEAF DRY MATTER CONTENT ARE IMPORTANT TO PLANT PERSISTENCE IN A HIGHLY UNSTABLE VOLCANIC GROUND
Authors

Anton P. Korablev, PhD, Senior Researcher in the Komarov Botanical Institute of RAS (197022, Russia, St. Petersburg, Professor Popov Street, 2B); iD ORCID: https://orcid.org/0000-0003-1235-6402; e-mail: akorablev@binran.ru
Elizaveta V. Sandalova, Junior Researcher in the Komarov Botanical Institute of RAS (197022, St. Petersburg, Professor Popov Street, 2B); PhD Student in the Lomonosov Moscow State University (119991, Russia, Moscow, Leninskie Gory, 1); iD ORCID: https://orcid.org/0009-0002-0509-7035; e-mail: cataphyll@list.ru
Kirill A. Arapov, Research Assistant in the Komarov Botanical Institute of RAS (197022, Russia, St. Petersburg, Professor Popov Street, 2B); iD ORCID: https://orcid.org/0009-0006-3620-0487; e-mail: voldemarmochalkin@yandex.ru
Ksenia M. Zaripova, Junior Researcher in the Komarov Botanical Institute of RAS (197022, Russia, St. Petersburg, Professor Popov Street, 2B); Junior Researcher in the Institute of Limnology of the RAS — a structural unit of the St. Petersburg Federal Research Center of the Russian Academy of Sciences (196105, Russia, St. Petersburg, Sevastyanova Street, 9); iD ORCID: https://orcid.org/0009-0001-1160-4139; e-mail: fikuspavel@mail.ru

Reference to article

Korablev A.P., Sandalova E.V., Arapov K.A., Zaripova K.M. 2024. Biomorphological traits and leaf dry matter content are important to plant persistence in a highly unstable volcanic ground. Nature Conservation Research 9(2): 73–89. https://dx.doi.org/10.24189/ncr.2024.015

Electronic Supplement 1. Traits of vascular plants noted in sample plots on the Tolbachinsky Dol volcanic plateau (Kamchatka, Russia) (Link).
Electronic Supplement 2. Correlations of community weighted means of plant traits and proportions of species of various functional types with PCA axes in sample plots on the Tolbachinsky Dol volcanic plateau (Kamchatka, Russia) (Link).

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2024.015
Abstract

The colonisation of newly formed territories by plants during primary succession is a crucial stage in the formation of ecosystems. Adaptations of species to withstand harsh environment allow them to survive and form pioneer communities. We analysed ten categorical and quantitative plant traits to examine their role in plant resistance to substrate instability in primary volcanic habitats. The research questions were: 1) which plant traits enable plants to persist under the most unstable ground conditions?; 2) what are the ecological strategies of species that grow under the condition of stress, such as low mineral nutrition, coupled with intense disturbance, such as unstable ground? The research was conducted on the Tolbachinsky Dol plateau in Kamchatka, Russia, on loose volcanic sediments of the 1975 eruption. At altitudes ranging from 700 m a.s.l. to 1000 m a.s.l., 40 sample plots were established along the gradients of altitude and degrees of ground instability. The species composition of vascular plants and the percentage cover of species, as well as other habitat characteristics, were assessed. Linear models were used to investigate the relationship between traits and ground instability. The principal component analysis was used to identify groups of characteristic traits. Leaf dry matter content (LDMC) had the largest explained variance. The LDMC community weighted means decreased with increasing disturbance (ground instability). A whole set of categorical traits, i.e. plant functional types, characterised the adaptation of plants to unstable ground. These characteristics include life-form (according to Serebryakov classification), density of shoots arrangement, morphology of underground organs, and, to a lesser extent, dispersal mode. The study analysed 45 species, and it was found that only four of them were adapted to perform under conditions of high substrate instability. The study showed that the mutual interaction of a suite of biomorphological traits and leaf density characteristics formed a syndrome of pioneer species adapted to unstable ground. The ecological strategies of the majority of species in the studied communities were characterised by the predominance of the stress-tolerant strategy, explained by the extremely poor mineral nutrition in the primary habitats. Under conditions of both low nutrient availability and high disturbance intensity, species with a mixed stress-tolerant-ruderal strategy are favoured. In the gradient of increasing disturbance, the role of the ruderal axis increased while stress tolerance decreased. However, the role of ecological strategy may be weakened by the presence of other important adaptive traits.

Keywords

adaptation, ecological strategy, extreme habitat, functional trait, Kamchatka, leaf area, life-form, specific leaf area, volcanic habitat

Artice information

Received: 09.12.2023. Revised: 18.02.2024. Accepted: 12.03.2024.

The full text of the article
References

Aleksandrova V.D. 1964 Study of vegetation cover changes. In: Field Geobotany. Vol. 3. Leningrad: Nauka. P. 300–447. [In Russian]
Anthelme F., Cauvy-Fraunié S., Francou B., Cáceres B., Dangles O. 2021. Living at the Edge: Increasing Stress for Plants 2–13 Years after the Retreat of a Tropical Glacier. Frontiers in Ecology and Evolution 9: 584872. DOI: 10.3389/fevo.2021.584872
Aplet G.H., Hughes R.F., Vitousek P.M. 1998. Ecosystem development on Hawaiian lava flows: Biomass and species composition. Journal of Vegetation Science 9(1): 17–26. DOI: 10.2307/3237219
Barba‐Escoto L., Ponce‐Mendoza A., García‐Romero A., Calvillo‐Medina R.P. 2019. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico. Journal of Vegetation Science 30(2): 375–385. DOI: 10.1111/jvs.12732
Bardgett R.D., Mommer L., De Vries F.T. 2014. Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology and Evolution 29(12): 692–699. DOI: 10.1016/j.tree.2014.10.006
Bartušková A., Lubbe F.C., Qian J., Herben T., Klimešová J. 2022. The effect of moisture, nutrients and disturbance on storage organ size and persistence in temperate herbs. Functional Ecology 36(2): 314–325. DOI: 10.1111/1365-2435.13997
Belyea L.R., Lancaster J. 1999. Assembly Rules within a Contingent Ecology. Oikos 86(3): 402–416. DOI: 10.2307/3546646
Bermúdez R., Retuerto R. 2013. Living the difference: Alternative functional designs in five perennial herbs coexisting in a coastal dune environment. Functional Plant Biology 40(11): 1187–1198. DOI: 10.1071/FP12392
Bezdelev A.B., Bezdeleva T.A. 2006. Life forms of seed plants of the Russian Far East. Vladivostok: Dalnauka. 295 p. [In Russian]
Bilaya N.A., Korablev A.P., Zelenkovsky P.S., Chukov S.N. 2022. Ecological and Geochemical Features of Soils of the Tolbachik Dol Volcanic Plateau. Eurasian Soil Science 55(4): 404–412. DOI: 10.1134/S1064229322040044
Billings W.D. 1974. Arctic and alpine vegetations: Plant adaptations to cold summer climates. In: J.D. Ives, R.G. Barry (Eds.): Arctic and Alpine Environments. London: Methuen. P. 403–443.
Caccianiga M., Luzzaro A., Pierce S., Ceriani R.M., Cerabolini B. 2006. The functional basis of a primary succession resolved by CSR classification. Oikos 112(1): 10–20. DOI: 10.1111/j.0030-1299.2006.14107.x
Chapin D.M., Bliss L.C. 1989. Seedling Growth, Physiology, and Survivorship in a Subalpine, Volcanic Environment. Ecology 70(5): 1325–1334. DOI: 10.2307/1938192
Chapin F.S., Matson P.A., Vitousek P.M. 2011. Principles of Terrestrial Ecosystem Ecology. New York: Springer. 529 p. DOI: 10.1007/978-1-4419-9504-9
Ciccarelli D. 2015. Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession?. Estuarine, Coastal and Shelf Science 165: 247–253. DOI: 10.1016/j.ecss.2015.05.023
Clements F.E. 1916. Plant succession: An analysis of the development of vegetation. Washington: Carnegie Institution of Washington. 512 p. DOI: 10.5962/bhl.title.56234
Crisafulli C.M., Swanson F.J., Halvorson J.J., Clarkson B.D. 2015. Volcano Ecology: Disturbance Characteristics and Assembly of Biological Communities. In: H. Sigurdsson (Ed.): The Encyclopedia of Volcanoes (Second Edition). USA: Academic Press. P. 1265–1284. DOI: 10.1016/B978-0-12-385938-9.00073-0
Cutler N. 2010. Long-term primary succession: A comparison of non-spatial and spatially explicit inferential techniques. Plant Ecology 208(1): 123–136. DOI: 10.1007/s11258-009-9692-2
Cutler N.A., Belyea L.R., Dugmore A.J. 2008. Spatial patterns of microsite colonisation on two young lava flows on Mount Hekla, Iceland. Journal of Vegetation Science 19(2): 277–286. DOI: 10.3170/2008-8-18371
Danin A. 1991. Plant adaptations in desert dunes. Journal of Arid Environments 21(2): 193–212. DOI: 10.1016/S0140-1963(18)30682-7
del Moral R. 2007. Limits to convergence of vegetation during early primary succession. Journal of Vegetation Science 18(4): 479–488. DOI: 10.1111/j.1654-1103.2007.tb02562.x
del Moral R., Bliss L.C. 1993. Mechanisms of Primary Succession: Insights Resulting from the Eruption of Mount St Helens. Advances in Ecological Research 24: 1–66. DOI: 10.1016/S0065-2504(08)60040-9
Díaz S., Kattge J., Cornelissen J.H., Wright I.J., Lavorel S., Dray S., Reu B., Kleyer M., Wirth C., Prentice I.C., Garnier E., Bönisch G., Westoby M., Poorter H., Reich P.B., Moles A.T., Dickie J., Gillison A.N., Zanne A.E., Chave J., Wright S.J., Sheremet'ev S.N., Jactel H., Baraloto C., Cerabolini B., Pierce S., Shipley B., Kirkup D., Casanoves F., Joswig J.S. et al. 2016. The global spectrum of plant form and function. Nature 529(7585): 167–171. DOI: 10.1038/nature16489
Elias R.B., Dias E. 2007. The role of habitat features in a primary succession. Arquipélago. Life and Marine Sciences 24: 1–10.
Fedosov S.A. (Ed.). 1984. The Great Fissure Tolbachik Eruption (1975–1976, Kamchatka). Moscow: Nauka. 638 p. [In Russian]
Franzén M., Dieker P., Schrader J., Helm A. 2019. Rapid plant colonization of the forelands of a vanishing glacier is strongly associated with species traits. Arctic, Antarctic, and Alpine Research 51(1): 366–378. DOI: 10.1080/15230430.2019.1646574
Freschet G.T., Pagès L., Iversen C.M., Comas L.H., Rewald B., Roumet C., Klimešová J., Zadworny M., Poorter H., Postma J.A., Adams T.S., Bagniewska-Zadworna A., Bengough A.G., Blancaflor E.B., Brunner I., Cornelissen J.H.C., Garnier E., Gessler A., Hobbie S.E., Meier I.C., Mommer L., Picon-Cochard C., Rose L., Ryser P., Scherer-Lorenzen M., Soudzilovskaia N.A., Stokes A., Sun T., Valverde-Barrantes O.J., Weemstra M. et al. 2021. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist 232(3): 973–1122. DOI: 10.1111/nph.17572
Fuller R.N., del Moral R. 2003. The role of refugia and dispersal in primary succession on Mount St. Helens, Washington. Journal of Vegetation Science 14(5): 637–644. DOI: 10.1111/j.1654-1103.2003.tb02195.x
Garnier E., Navas M.L., Grigulis K. 2016. Plant functional diversity: Organism traits, community structure, and ecosystem properties. Oxford: Oxford University Press. 231 p. DOI: 10.1093/acprof:oso/9780198757368.001.0001
Garren S.T. 2019. Permutation Tests for Nonparametric Statistics. Ver. 2.2. Available from https://cran.r-project.org/web/packages/jmuOutlier/jmuOutlier.pdf
Gorchakovskii P.L., Stepanova A.V. 1995. Formation of Morphological Structure of the Alpine Cushion-Shaped Dwarf Semishrub Gypsophila uralensis Less. in the Course of Ontogenesis. Ekologiya 26(6): 424–427. [In Russian]
Grime J.P., Pierce S. 2012. The evolutionary strategies that shape ecosystems. Oxford: John Wiley & Sons, Ltd. 240 p.
Gyssels G., Poesen J., Bochet E., Li Y. 2005. Impact of plant roots on the resistance of soils to erosion by water: A review. Progress in Physical Geography 29(2): 189–217. DOI: 10.1191/0309133305pp443ra
Harris T., Klimeš A., Martínková J., Klimešová J. 2023. Herbs are not just small plants: What biomass allocation to rhizomes tells us about differences between trees and herbs. American Journal of Botany 110(7): e16202. DOI: 10.1002/ajb2.16202
Hodgson J.G., Montserrat-Martí G., Charles M., Jones G., Wilson P., Shipley B., Sharafi M., Cerabolini B.E.L., Cornelissen J.H.C., Band S.R., Bogard A., Castro-Díez P., Guerrero-Campo J., Palmer C., Pérez-Rontomé M.C., Carter G., Hynd A., Romo-Díez A., De Torres Espuny L., Royo Pla F. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?. Annals of Botany 108(7): 1337–1345. DOI: 10.1093/aob/mcr225
Ivanova L.A., Yudina P.K., Ronzhina D.A., Ivanov L.A., Hölzel N. 2018. Quantitative mesophyll parameters rather than whole-leaf traits predict response of C3 steppe plants to aridity. New Phytologist 217(2): 558–570. DOI: 10.1111/nph.14840
Joswig J.S., Wirth C., Schuman M.C., Kattge J., Reu B., Wright I.J., Sippel S.D., Rüger N., Richter R., Schaepman M.E., van Bodegom P.M., Cornelissen J.H.C., Díaz S., Hattingh W.N., Kramer K., Lens F., Niinemets Ü., Reich P.B., Reichstein M., Römermann C., Schrodt F., Anand M., Bahn M., Byun C., Campetella G., Cerabolini B.E.L., Craine J.M., Gonzalez-Melo A., Gutiérrez A.G., He T. et al. 2021. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution 6(1): 36–50. DOI: 10.1038/s41559-021-01616-8
Kattge J., Bönisch G., Díaz S., Lavorel S., Prentice I.C., Leadley P., Tautenhahn S., Werner G.D.A., Aakala T., Abedi M., Acosta A.T.R., Adamidis G.C., Adamson K., Aiba M., Albert C.H., Alcántara J.M., Alcázar C.C., Aleixo I., Ali H., Amiaud B., Ammer C., Amoroso M.M., Anand M., Anderson C., Anten N., Antos J., Apgaua D.M.G., Ashman T.L., Asmara D.H., Asner G.P., Aspinwall M. et al. 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26(1): 119–188. DOI: 10.1111/gcb.14904
Keddy P.A. 1992. Assembly and response rules: Two goals for predictive community ecology. Journal of Vegetation Science 3(2): 157–164. DOI: 10.2307/3235676
Klimešová J. 2021. An Integrated Plant Architecture: Roots, Shoots, and Everything in Between. Annual Plant Reviews online 4(2): 529–550. DOI: 10.1002/9781119312994.apr0753
Korablev A.P., Neshataeva V.Yu. 2016. Primary plant successions of forest belt vegetation on the Tolbachinskii Dol volcanic plateau (Kamchatka). Biology Bulletin 43(4): 307–317. DOI: 10.1134/S1062359016040051
Korablev A.P., Smirnov V.E., Neshataeva V.Y., Kuzmin I.V. 2018. Plant Life-Forms and Environmental Filtering during Primary Succession on Loose Volcanic Substrata (Kamchatka, Russia). Biology Bulletin 45(3): 255–264. DOI: 10.1134/S106235901803007X
Korablev A., Smirnov V., Neshataeva V., Kuzmin I., Nekrasov T. 2020. Plant dispersal strategies in primary succession on the Tolbachinsky Dol volcanic Plateau (Russia). Journal of Vegetation Science 31(6): 954–966. DOI: 10.1111/jvs.12901
Kraft N.J.B., Godoy O., Levine J.M. 2015. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America 112(3): 797–802. DOI: 10.1073/pnas.1413650112
Laliberté E., Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1): 299–305. DOI: 10.1890/08-2244.1
Lambers H., Poorter H. 2004. Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. Advances in Ecological Research 34: 283–362. DOI: 10.1016/S0065-2504(03)34004-8
Lavorel S., Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology 16(5): 545–556. DOI: 10.1046/j.1365-2435.2002.00664.x
MacArthur R.H. 1984. Geographical Ecology: Patterns in the Distribution of Species. Princeton: Princeton University Press. 288 p.
Mahdavi P., Bergmeier E. 2016. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions. Acta Oecologica 74: 37–45. DOI: 10.1016/j.actao.2016.06.003
Marleau J.N., Jin Y., Bishop J.G., Fagan W.F., Lewis M.A. 2011. A Stoichiometric Model of Early Plant Primary Succession. American Naturalist 177(2): 233–245. DOI: 10.1086/658066
Marteinsdóttir B., Thórhallsdóttir T.E., Svavarsdóttir K. 2013. An experimental test of the relationship between small scale topography and seedling establishment in primary succession. Plant Ecology 214(8): 1007–1015. DOI: 10.1007/s11258-013-0226-6
Marteinsdóttir B., Svavarsdóttir K., Thórhallsdóttir T.E. 2018. Multiple mechanisms of early plant community assembly with stochasticity driving the process. Ecology 99(1): 91–102. DOI: 10.1002/ecy.2079
Matveeva N.V. (Ed.). 2015. Plants and fungi of the polar deserts in the northern hemisphere. Saint‑Petersburg: Marafon. 320 p. [In Russian]
Mudrák O., Řehounková K., Vítovcová K., Tichý L., Prach K. 2021. Ability of plant species to colonise human-disturbed habitats: Role of phylogeny and functional traits. Applied Vegetation Science 24(1): e12528. DOI: 10.1111/avsc.12528
Muñoz G., Orlando J., Zuñiga-Feest A. 2021. Plants colonizing volcanic deposits: Root adaptations and effects on rhizosphere microorganisms. Plant and Soil 461(1–2): 265–279. DOI: 10.1007/s11104-020-04783-y
Neshataeva V.Yu. (Ed.). 2014. Vegetation cover of the Central Kamchatka volcanic plateaus (Kluchevskaya group of volcanoes). Moscow: KMK Scientific Press Ltd. 461 p. [In Russian]
Pakeman R.J., Lennon J.J., Brooker R.W. 2011. Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia 167(1): 209–218. DOI: 10.1007/s00442-011-1980-6
Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., van der Heijden M.G.A., Sack L., Blonder B., Poschlod P. et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61(3): 167–234. DOI: 10.1071/BT12225
Pierce S., Negreiros D., Cerabolini B.E.L., Kattge J., Díaz S., Kleyer M., Shipley B., Wright S.J., Soudzilovskaia N.A., Onipchenko V.G., van Bodegom P.M., Frenette-Dussault C., Weiher E., Pinho B.X., Cornelissen J.H.C., Grime J.P., Thompson K., Hunt R., Wilson P.J., Buffa G., Nyakunga O.C., Reich P.B., Caccianiga M., Mangili F., Ceriani R.M., Luzzaro A., Brusa G., Siefert A., Barbosa N.P.U., Chapin F.S. et al. 2017. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology 31(2): 444–457. DOI: 10.1111/1365-2435.12722
Prach K., Pyšek P., Šmilauer P. 1997. Changes in Species Traits during Succession: A Search for Pattern. Oikos 79(1): 201–205. DOI: 10.2307/3546109
Pyankov V.I., Ivanov L.A., Lambers H. 2001. Plant construction cost in the boreal species differing in their ecological strategies. Russian Journal of Plant Physiology 48(1): 67–73. DOI: 10.1023/A:1009002715572
Qi Y., Wei W., Chen C., Chen L. 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation 18: e00606. DOI: 10.1016/j.gecco.2019.e00606
R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available from https://www.R-project.org
Ramensky L.G. 1938. Introduction to the Complex Soil-Geobotanical Investigation of Lands. Moscow: Selkhozgiz. 620 p. [In Russian]
Řehounková K., Prach K. 2010. Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel–sand pits. Basic and Applied Ecology 11(1): 45–53. DOI: 10.1016/j.baae.2009.06.007
Šerá B., Šerý M. 2004. Number and weight of seeds and reproductive strategies of herbaceous plants. Folia Geobotanica 39(1): 27–40. DOI: 10.1007/BF02803262
Serebryakov I.G. 1962. Ecological morphology of plants: Life forms of angiosperms and conifers. Moscow: Vysshaya Shkola. 380 p. [In Russian]
Song M., Duan D., Chen H., Hu Q., Zhang F., Xu X., Tian Y., Ouyang H., Peng C. 2008. Leaf δ13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau. Ecography 31(4): 499–508. DOI: 10.1111/j.0906-7590.2008.05331.x
Sonnier G., Shipley B., Navas M.L. 2010. Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. Journal of Vegetation Science 21(6): 1014–1024. DOI: 10.1111/j.1654-1103.2010.01210.x
Sutomo S., Fardila D., Putri L.S.E. 2011. Species composition and interspecific association of plants in primary succession of Mount Merapi, Indonesia. Biodiversitas 12(4): 212–217. DOI: 10.13057/biodiv/d120405
Tagawa H. 1992. Primary succession and the effect of first arrivals on subsequent development of forest types. GeoJournal 28(2): 175–183. DOI: 10.1007/BF00177231
Titus J.H., Tsuyuzaki S. 2003. Distribution of plants in relation to microsites on recent volcanic substrates on Mount Koma, Hokkaido, Japan. Ecological Research 18(1): 91–98. DOI: 10.1046/j.1440-1703.2003.00536.x
Tsuyuzaki S. 2009. Causes of plant community divergence in the early stages of volcanic succession. Journal of Vegetation Science 20(5): 959–969. DOI: 10.1111/j.1654-1103.2009.01104.x
Tsuyuzaki S., del Moral R. 1995. Species attributes in early primary succession on volcanoes. Journal of Vegetation Science 6(4): 517–522. DOI: 10.2307/3236350
Vasilevich V.I. 2016. Functional diversity in plant communities. Botanicheskii Zhurnal 101(7): 776–795. DOI: 10.1134/S0006813616070024 [In Russian]
Velázquez A., Giménez de Azcárate J., Weinmann M.E., Bocco G. 2000. Vegetation dynamics on Paricutin, a recent Mexican volcano. Acta Phytogeographica Suecica 85: 71–78.
Vilmundardóttir O.K., Sigurmundsson F.S., Møller Pedersen G.B., Belart J.M.C., Kizel F., Falco N., Benediktsson J.A., Gísladóttir G. 2018. Of mosses and men: Plant succession, soil development and soil carbon accretion in the sub-Arctic volcanic landscape of Hekla, Iceland. Progress in Physical Geography 42(6): 765–791. DOI: 10.1177/0309133318798754
Voronkova N.M., Kholina A.B., Verkholat V.P. 2008. Plant biomorphology and seed germination in pioneer species of Kamchatka volcanoes. Biology Bulletin 35(6): 599–605. DOI: 10.1134/S106235900806006X
Voronkova N.M., Verkholat V.P., Kholina A.B. 2011. Specific features of plants at early stages of the colonization of loose volcanic matter. Biology Bulletin 38(3): 237–241. DOI: 10.1134/S1062359011030150
Walker L.R., del Moral R. 2003. Primary succession and ecosystem rehabilitation. Cambridge: Cambridge University Press. 422 p. DOI: 10.1017/CBO9780511615078
Walker L.R., Bellingham P.J., Peltzer D.A. 2006. Plant characteristics are poor predictors of microsite colonization during the first two years of primary succession. Journal of Vegetation Science 17(3): 397–406. DOI: 10.1111/j.1654-1103.2006.tb02460.x
Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H., Diemer M., Flexas J., Garnier E., Groom P.K., Gulias J., Hikosaka K., Lamont B.B., Lee T., Lee W., Lusk C., Midgley J.J., Navas M.L., Niinemets U., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V.I., Roumet C., Thomas S.C. et al. 2004. The worldwide leaf economics spectrum. Nature 428(6985): 821–827. DOI: 10.1038/nature02403
Wright I.J., Reich P.B., Cornelissen J.H.C., Falster D.S., Garnier E., Hikosaka K., Lamont B.B., Lee W., Oleksyn J., Osada N., Poorter H., Villar R., Warton D.I., Westoby M. 2005. Assessing the generality of global leaf trait relationships. New Phytologist 166(2): 485–496. DOI: 10.1111/j.1469-8137.2005.01349.x
Yurtsev B.A., Koroleva T.M., Petrovsky V.V., Polozova T.G., Zhukova P.G., Katenin A.E. 2010. Summary of the flora of the Chukotka tundra. Saint-Petersburg: BBM. 628 p. [In Russian]
Zakharikhina L.V., Litvinenko Yu.S. 2011. Genetic and Geochemical Characteristics of Soils of Kamchatka. Moscow: Nauka. 244 p. [In Russian]
Zakharikhina L.V., Litvinenko Yu.S. 2019. Volcanism and geochemistry of soil and vegetation cover of Kamchatka. Communication 2. Specificity of forming the elemental composition of volcanic soil in cold and humid conditions. Vulkanologia i sejsmologia 3: 25–33. DOI: 10.31857/S0203-03062019325-33 [In Russian]
Zobel D.B., Antos J.A. 2009. Species properties and recovery from disturbance: Forest herbs buried by volcanic tephra. Journal of Vegetation Science 20(4): 650–662. DOI: 10.1111/j.1654-1103.2009.01057.x