References |
Aleksandrova V.D. 1964 Study of vegetation cover changes. In: Field Geobotany. Vol. 3. Leningrad: Nauka. P. 300–447. [In Russian] Anthelme F., Cauvy-Fraunié S., Francou B., Cáceres B., Dangles O. 2021. Living at the Edge: Increasing Stress for Plants 2–13 Years after the Retreat of a Tropical Glacier. Frontiers in Ecology and Evolution 9: 584872. DOI: 10.3389/fevo.2021.584872 Aplet G.H., Hughes R.F., Vitousek P.M. 1998. Ecosystem development on Hawaiian lava flows: Biomass and species composition. Journal of Vegetation Science 9(1): 17–26. DOI: 10.2307/3237219 Barba‐Escoto L., Ponce‐Mendoza A., García‐Romero A., Calvillo‐Medina R.P. 2019. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico. Journal of Vegetation Science 30(2): 375–385. DOI: 10.1111/jvs.12732 Bardgett R.D., Mommer L., De Vries F.T. 2014. Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology and Evolution 29(12): 692–699. DOI: 10.1016/j.tree.2014.10.006 Bartušková A., Lubbe F.C., Qian J., Herben T., Klimešová J. 2022. The effect of moisture, nutrients and disturbance on storage organ size and persistence in temperate herbs. Functional Ecology 36(2): 314–325. DOI: 10.1111/1365-2435.13997 Belyea L.R., Lancaster J. 1999. Assembly Rules within a Contingent Ecology. Oikos 86(3): 402–416. DOI: 10.2307/3546646 Bermúdez R., Retuerto R. 2013. Living the difference: Alternative functional designs in five perennial herbs coexisting in a coastal dune environment. Functional Plant Biology 40(11): 1187–1198. DOI: 10.1071/FP12392 Bezdelev A.B., Bezdeleva T.A. 2006. Life forms of seed plants of the Russian Far East. Vladivostok: Dalnauka. 295 p. [In Russian] Bilaya N.A., Korablev A.P., Zelenkovsky P.S., Chukov S.N. 2022. Ecological and Geochemical Features of Soils of the Tolbachik Dol Volcanic Plateau. Eurasian Soil Science 55(4): 404–412. DOI: 10.1134/S1064229322040044 Billings W.D. 1974. Arctic and alpine vegetations: Plant adaptations to cold summer climates. In: J.D. Ives, R.G. Barry (Eds.): Arctic and Alpine Environments. London: Methuen. P. 403–443. Caccianiga M., Luzzaro A., Pierce S., Ceriani R.M., Cerabolini B. 2006. The functional basis of a primary succession resolved by CSR classification. Oikos 112(1): 10–20. DOI: 10.1111/j.0030-1299.2006.14107.x Chapin D.M., Bliss L.C. 1989. Seedling Growth, Physiology, and Survivorship in a Subalpine, Volcanic Environment. Ecology 70(5): 1325–1334. DOI: 10.2307/1938192 Chapin F.S., Matson P.A., Vitousek P.M. 2011. Principles of Terrestrial Ecosystem Ecology. New York: Springer. 529 p. DOI: 10.1007/978-1-4419-9504-9 Ciccarelli D. 2015. Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession?. Estuarine, Coastal and Shelf Science 165: 247–253. DOI: 10.1016/j.ecss.2015.05.023 Clements F.E. 1916. Plant succession: An analysis of the development of vegetation. Washington: Carnegie Institution of Washington. 512 p. DOI: 10.5962/bhl.title.56234 Crisafulli C.M., Swanson F.J., Halvorson J.J., Clarkson B.D. 2015. Volcano Ecology: Disturbance Characteristics and Assembly of Biological Communities. In: H. Sigurdsson (Ed.): The Encyclopedia of Volcanoes (Second Edition). USA: Academic Press. P. 1265–1284. DOI: 10.1016/B978-0-12-385938-9.00073-0 Cutler N. 2010. Long-term primary succession: A comparison of non-spatial and spatially explicit inferential techniques. Plant Ecology 208(1): 123–136. DOI: 10.1007/s11258-009-9692-2 Cutler N.A., Belyea L.R., Dugmore A.J. 2008. Spatial patterns of microsite colonisation on two young lava flows on Mount Hekla, Iceland. Journal of Vegetation Science 19(2): 277–286. DOI: 10.3170/2008-8-18371 Danin A. 1991. Plant adaptations in desert dunes. Journal of Arid Environments 21(2): 193–212. DOI: 10.1016/S0140-1963(18)30682-7 del Moral R. 2007. Limits to convergence of vegetation during early primary succession. Journal of Vegetation Science 18(4): 479–488. DOI: 10.1111/j.1654-1103.2007.tb02562.x del Moral R., Bliss L.C. 1993. Mechanisms of Primary Succession: Insights Resulting from the Eruption of Mount St Helens. Advances in Ecological Research 24: 1–66. DOI: 10.1016/S0065-2504(08)60040-9 Díaz S., Kattge J., Cornelissen J.H., Wright I.J., Lavorel S., Dray S., Reu B., Kleyer M., Wirth C., Prentice I.C., Garnier E., Bönisch G., Westoby M., Poorter H., Reich P.B., Moles A.T., Dickie J., Gillison A.N., Zanne A.E., Chave J., Wright S.J., Sheremet'ev S.N., Jactel H., Baraloto C., Cerabolini B., Pierce S., Shipley B., Kirkup D., Casanoves F., Joswig J.S. et al. 2016. The global spectrum of plant form and function. Nature 529(7585): 167–171. DOI: 10.1038/nature16489 Elias R.B., Dias E. 2007. The role of habitat features in a primary succession. Arquipélago. Life and Marine Sciences 24: 1–10. Fedosov S.A. (Ed.). 1984. The Great Fissure Tolbachik Eruption (1975–1976, Kamchatka). Moscow: Nauka. 638 p. [In Russian] Franzén M., Dieker P., Schrader J., Helm A. 2019. Rapid plant colonization of the forelands of a vanishing glacier is strongly associated with species traits. Arctic, Antarctic, and Alpine Research 51(1): 366–378. DOI: 10.1080/15230430.2019.1646574 Freschet G.T., Pagès L., Iversen C.M., Comas L.H., Rewald B., Roumet C., Klimešová J., Zadworny M., Poorter H., Postma J.A., Adams T.S., Bagniewska-Zadworna A., Bengough A.G., Blancaflor E.B., Brunner I., Cornelissen J.H.C., Garnier E., Gessler A., Hobbie S.E., Meier I.C., Mommer L., Picon-Cochard C., Rose L., Ryser P., Scherer-Lorenzen M., Soudzilovskaia N.A., Stokes A., Sun T., Valverde-Barrantes O.J., Weemstra M. et al. 2021. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist 232(3): 973–1122. DOI: 10.1111/nph.17572 Fuller R.N., del Moral R. 2003. The role of refugia and dispersal in primary succession on Mount St. Helens, Washington. Journal of Vegetation Science 14(5): 637–644. DOI: 10.1111/j.1654-1103.2003.tb02195.x Garnier E., Navas M.L., Grigulis K. 2016. Plant functional diversity: Organism traits, community structure, and ecosystem properties. Oxford: Oxford University Press. 231 p. DOI: 10.1093/acprof:oso/9780198757368.001.0001 Garren S.T. 2019. Permutation Tests for Nonparametric Statistics. Ver. 2.2. Available from https://cran.r-project.org/web/packages/jmuOutlier/jmuOutlier.pdf Gorchakovskii P.L., Stepanova A.V. 1995. Formation of Morphological Structure of the Alpine Cushion-Shaped Dwarf Semishrub Gypsophila uralensis Less. in the Course of Ontogenesis. Ekologiya 26(6): 424–427. [In Russian] Grime J.P., Pierce S. 2012. The evolutionary strategies that shape ecosystems. Oxford: John Wiley & Sons, Ltd. 240 p. Gyssels G., Poesen J., Bochet E., Li Y. 2005. Impact of plant roots on the resistance of soils to erosion by water: A review. Progress in Physical Geography 29(2): 189–217. DOI: 10.1191/0309133305pp443ra Harris T., Klimeš A., Martínková J., Klimešová J. 2023. Herbs are not just small plants: What biomass allocation to rhizomes tells us about differences between trees and herbs. American Journal of Botany 110(7): e16202. DOI: 10.1002/ajb2.16202 Hodgson J.G., Montserrat-Martí G., Charles M., Jones G., Wilson P., Shipley B., Sharafi M., Cerabolini B.E.L., Cornelissen J.H.C., Band S.R., Bogard A., Castro-Díez P., Guerrero-Campo J., Palmer C., Pérez-Rontomé M.C., Carter G., Hynd A., Romo-Díez A., De Torres Espuny L., Royo Pla F. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?. Annals of Botany 108(7): 1337–1345. DOI: 10.1093/aob/mcr225 Ivanova L.A., Yudina P.K., Ronzhina D.A., Ivanov L.A., Hölzel N. 2018. Quantitative mesophyll parameters rather than whole-leaf traits predict response of C3 steppe plants to aridity. New Phytologist 217(2): 558–570. DOI: 10.1111/nph.14840 Joswig J.S., Wirth C., Schuman M.C., Kattge J., Reu B., Wright I.J., Sippel S.D., Rüger N., Richter R., Schaepman M.E., van Bodegom P.M., Cornelissen J.H.C., Díaz S., Hattingh W.N., Kramer K., Lens F., Niinemets Ü., Reich P.B., Reichstein M., Römermann C., Schrodt F., Anand M., Bahn M., Byun C., Campetella G., Cerabolini B.E.L., Craine J.M., Gonzalez-Melo A., Gutiérrez A.G., He T. et al. 2021. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution 6(1): 36–50. DOI: 10.1038/s41559-021-01616-8 Kattge J., Bönisch G., Díaz S., Lavorel S., Prentice I.C., Leadley P., Tautenhahn S., Werner G.D.A., Aakala T., Abedi M., Acosta A.T.R., Adamidis G.C., Adamson K., Aiba M., Albert C.H., Alcántara J.M., Alcázar C.C., Aleixo I., Ali H., Amiaud B., Ammer C., Amoroso M.M., Anand M., Anderson C., Anten N., Antos J., Apgaua D.M.G., Ashman T.L., Asmara D.H., Asner G.P., Aspinwall M. et al. 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26(1): 119–188. DOI: 10.1111/gcb.14904 Keddy P.A. 1992. Assembly and response rules: Two goals for predictive community ecology. Journal of Vegetation Science 3(2): 157–164. DOI: 10.2307/3235676 Klimešová J. 2021. An Integrated Plant Architecture: Roots, Shoots, and Everything in Between. Annual Plant Reviews online 4(2): 529–550. DOI: 10.1002/9781119312994.apr0753 Korablev A.P., Neshataeva V.Yu. 2016. Primary plant successions of forest belt vegetation on the Tolbachinskii Dol volcanic plateau (Kamchatka). Biology Bulletin 43(4): 307–317. DOI: 10.1134/S1062359016040051 Korablev A.P., Smirnov V.E., Neshataeva V.Y., Kuzmin I.V. 2018. Plant Life-Forms and Environmental Filtering during Primary Succession on Loose Volcanic Substrata (Kamchatka, Russia). Biology Bulletin 45(3): 255–264. DOI: 10.1134/S106235901803007X Korablev A., Smirnov V., Neshataeva V., Kuzmin I., Nekrasov T. 2020. Plant dispersal strategies in primary succession on the Tolbachinsky Dol volcanic Plateau (Russia). Journal of Vegetation Science 31(6): 954–966. DOI: 10.1111/jvs.12901 Kraft N.J.B., Godoy O., Levine J.M. 2015. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America 112(3): 797–802. DOI: 10.1073/pnas.1413650112 Laliberté E., Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1): 299–305. DOI: 10.1890/08-2244.1 Lambers H., Poorter H. 2004. Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. Advances in Ecological Research 34: 283–362. DOI: 10.1016/S0065-2504(03)34004-8 Lavorel S., Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology 16(5): 545–556. DOI: 10.1046/j.1365-2435.2002.00664.x MacArthur R.H. 1984. Geographical Ecology: Patterns in the Distribution of Species. Princeton: Princeton University Press. 288 p. Mahdavi P., Bergmeier E. 2016. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions. Acta Oecologica 74: 37–45. DOI: 10.1016/j.actao.2016.06.003 Marleau J.N., Jin Y., Bishop J.G., Fagan W.F., Lewis M.A. 2011. A Stoichiometric Model of Early Plant Primary Succession. American Naturalist 177(2): 233–245. DOI: 10.1086/658066 Marteinsdóttir B., Thórhallsdóttir T.E., Svavarsdóttir K. 2013. An experimental test of the relationship between small scale topography and seedling establishment in primary succession. Plant Ecology 214(8): 1007–1015. DOI: 10.1007/s11258-013-0226-6 Marteinsdóttir B., Svavarsdóttir K., Thórhallsdóttir T.E. 2018. Multiple mechanisms of early plant community assembly with stochasticity driving the process. Ecology 99(1): 91–102. DOI: 10.1002/ecy.2079 Matveeva N.V. (Ed.). 2015. Plants and fungi of the polar deserts in the northern hemisphere. Saint‑Petersburg: Marafon. 320 p. [In Russian] Mudrák O., Řehounková K., Vítovcová K., Tichý L., Prach K. 2021. Ability of plant species to colonise human-disturbed habitats: Role of phylogeny and functional traits. Applied Vegetation Science 24(1): e12528. DOI: 10.1111/avsc.12528 Muñoz G., Orlando J., Zuñiga-Feest A. 2021. Plants colonizing volcanic deposits: Root adaptations and effects on rhizosphere microorganisms. Plant and Soil 461(1–2): 265–279. DOI: 10.1007/s11104-020-04783-y Neshataeva V.Yu. (Ed.). 2014. Vegetation cover of the Central Kamchatka volcanic plateaus (Kluchevskaya group of volcanoes). Moscow: KMK Scientific Press Ltd. 461 p. [In Russian] Pakeman R.J., Lennon J.J., Brooker R.W. 2011. Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia 167(1): 209–218. DOI: 10.1007/s00442-011-1980-6 Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., van der Heijden M.G.A., Sack L., Blonder B., Poschlod P. et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61(3): 167–234. DOI: 10.1071/BT12225 Pierce S., Negreiros D., Cerabolini B.E.L., Kattge J., Díaz S., Kleyer M., Shipley B., Wright S.J., Soudzilovskaia N.A., Onipchenko V.G., van Bodegom P.M., Frenette-Dussault C., Weiher E., Pinho B.X., Cornelissen J.H.C., Grime J.P., Thompson K., Hunt R., Wilson P.J., Buffa G., Nyakunga O.C., Reich P.B., Caccianiga M., Mangili F., Ceriani R.M., Luzzaro A., Brusa G., Siefert A., Barbosa N.P.U., Chapin F.S. et al. 2017. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology 31(2): 444–457. DOI: 10.1111/1365-2435.12722 Prach K., Pyšek P., Šmilauer P. 1997. Changes in Species Traits during Succession: A Search for Pattern. Oikos 79(1): 201–205. DOI: 10.2307/3546109 Pyankov V.I., Ivanov L.A., Lambers H. 2001. Plant construction cost in the boreal species differing in their ecological strategies. Russian Journal of Plant Physiology 48(1): 67–73. DOI: 10.1023/A:1009002715572 Qi Y., Wei W., Chen C., Chen L. 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation 18: e00606. DOI: 10.1016/j.gecco.2019.e00606 R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available from https://www.R-project.org Ramensky L.G. 1938. Introduction to the Complex Soil-Geobotanical Investigation of Lands. Moscow: Selkhozgiz. 620 p. [In Russian] Řehounková K., Prach K. 2010. Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel–sand pits. Basic and Applied Ecology 11(1): 45–53. DOI: 10.1016/j.baae.2009.06.007 Šerá B., Šerý M. 2004. Number and weight of seeds and reproductive strategies of herbaceous plants. Folia Geobotanica 39(1): 27–40. DOI: 10.1007/BF02803262 Serebryakov I.G. 1962. Ecological morphology of plants: Life forms of angiosperms and conifers. Moscow: Vysshaya Shkola. 380 p. [In Russian] Song M., Duan D., Chen H., Hu Q., Zhang F., Xu X., Tian Y., Ouyang H., Peng C. 2008. Leaf δ13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau. Ecography 31(4): 499–508. DOI: 10.1111/j.0906-7590.2008.05331.x Sonnier G., Shipley B., Navas M.L. 2010. Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. Journal of Vegetation Science 21(6): 1014–1024. DOI: 10.1111/j.1654-1103.2010.01210.x Sutomo S., Fardila D., Putri L.S.E. 2011. Species composition and interspecific association of plants in primary succession of Mount Merapi, Indonesia. Biodiversitas 12(4): 212–217. DOI: 10.13057/biodiv/d120405 Tagawa H. 1992. Primary succession and the effect of first arrivals on subsequent development of forest types. GeoJournal 28(2): 175–183. DOI: 10.1007/BF00177231 Titus J.H., Tsuyuzaki S. 2003. Distribution of plants in relation to microsites on recent volcanic substrates on Mount Koma, Hokkaido, Japan. Ecological Research 18(1): 91–98. DOI: 10.1046/j.1440-1703.2003.00536.x Tsuyuzaki S. 2009. Causes of plant community divergence in the early stages of volcanic succession. Journal of Vegetation Science 20(5): 959–969. DOI: 10.1111/j.1654-1103.2009.01104.x Tsuyuzaki S., del Moral R. 1995. Species attributes in early primary succession on volcanoes. Journal of Vegetation Science 6(4): 517–522. DOI: 10.2307/3236350 Vasilevich V.I. 2016. Functional diversity in plant communities. Botanicheskii Zhurnal 101(7): 776–795. DOI: 10.1134/S0006813616070024 [In Russian] Velázquez A., Giménez de Azcárate J., Weinmann M.E., Bocco G. 2000. Vegetation dynamics on Paricutin, a recent Mexican volcano. Acta Phytogeographica Suecica 85: 71–78. Vilmundardóttir O.K., Sigurmundsson F.S., Møller Pedersen G.B., Belart J.M.C., Kizel F., Falco N., Benediktsson J.A., Gísladóttir G. 2018. Of mosses and men: Plant succession, soil development and soil carbon accretion in the sub-Arctic volcanic landscape of Hekla, Iceland. Progress in Physical Geography 42(6): 765–791. DOI: 10.1177/0309133318798754 Voronkova N.M., Kholina A.B., Verkholat V.P. 2008. Plant biomorphology and seed germination in pioneer species of Kamchatka volcanoes. Biology Bulletin 35(6): 599–605. DOI: 10.1134/S106235900806006X Voronkova N.M., Verkholat V.P., Kholina A.B. 2011. Specific features of plants at early stages of the colonization of loose volcanic matter. Biology Bulletin 38(3): 237–241. DOI: 10.1134/S1062359011030150 Walker L.R., del Moral R. 2003. Primary succession and ecosystem rehabilitation. Cambridge: Cambridge University Press. 422 p. DOI: 10.1017/CBO9780511615078 Walker L.R., Bellingham P.J., Peltzer D.A. 2006. Plant characteristics are poor predictors of microsite colonization during the first two years of primary succession. Journal of Vegetation Science 17(3): 397–406. DOI: 10.1111/j.1654-1103.2006.tb02460.x Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H., Diemer M., Flexas J., Garnier E., Groom P.K., Gulias J., Hikosaka K., Lamont B.B., Lee T., Lee W., Lusk C., Midgley J.J., Navas M.L., Niinemets U., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V.I., Roumet C., Thomas S.C. et al. 2004. The worldwide leaf economics spectrum. Nature 428(6985): 821–827. DOI: 10.1038/nature02403 Wright I.J., Reich P.B., Cornelissen J.H.C., Falster D.S., Garnier E., Hikosaka K., Lamont B.B., Lee W., Oleksyn J., Osada N., Poorter H., Villar R., Warton D.I., Westoby M. 2005. Assessing the generality of global leaf trait relationships. New Phytologist 166(2): 485–496. DOI: 10.1111/j.1469-8137.2005.01349.x Yurtsev B.A., Koroleva T.M., Petrovsky V.V., Polozova T.G., Zhukova P.G., Katenin A.E. 2010. Summary of the flora of the Chukotka tundra. Saint-Petersburg: BBM. 628 p. [In Russian] Zakharikhina L.V., Litvinenko Yu.S. 2011. Genetic and Geochemical Characteristics of Soils of Kamchatka. Moscow: Nauka. 244 p. [In Russian] Zakharikhina L.V., Litvinenko Yu.S. 2019. Volcanism and geochemistry of soil and vegetation cover of Kamchatka. Communication 2. Specificity of forming the elemental composition of volcanic soil in cold and humid conditions. Vulkanologia i sejsmologia 3: 25–33. DOI: 10.31857/S0203-03062019325-33 [In Russian] Zobel D.B., Antos J.A. 2009. Species properties and recovery from disturbance: Forest herbs buried by volcanic tephra. Journal of Vegetation Science 20(4): 650–662. DOI: 10.1111/j.1654-1103.2009.01057.x |