Article

Article name ESTIMATING BROWN BEAR POPULATION DENSITY AND ABUNDANCE USING CAMERA TRAPS IN THE CENTRAL FOREST STATE NATURE RESERVE (WEST OF EUROPEAN RUSSIA)
Authors

Sergey S. Ogurtsov, Senior Researcher of the Central Forest State Nature Biosphere Reserve (172521, Russia, Tver Region, Nelidovo district, Zapovednyi settlement); Junior Researcher of the A.N. Severtsov Institute of Ecology and Evolution of the RAS (119071, Russia, Moscow, Leninsky Prospekt, 33); iD ORCID: https://orcid.org/0000-0002-0859-8954; e-mail: etundra@mail.ru

Reference to article

Ogurtsov S.S. 2023. Estimating brown bear population density and abundance using camera traps in the Central Forest State Nature Reserve (west of European Russia). Nature Conservation Research 8(2): 1–21. https://dx.doi.org/10.24189/ncr.2023.008

Electronic Supplement. Calibration of camera trap models, their deployments, and calculation of the activity level for REM building to estimate the brown bear population density in the Southern Forestry of the Central Forest State Nature Reserve, Russia (Link).

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2023.008
Abstract

This paper presents the results of estimating the population density and abundance of Ursus arctos (hereinafter – brown bear) in the Southern Forestry of the Central Forest State Nature Biosphere Reserve (CFNR), West of European Russia, in 2021 based on the Random Encounter Model (REM) based upon data obtained from camera traps. Methods for obtaining parameters necessary for building a model are demonstrated. A total of 7970 camera trap nights were worked out at 46 stations, and 502 independent trap events were obtained. The average relative abundance index (RAI) was 6.28 ± 1.59. The total average brown bear population density was 0.086 ± 0.034 individuals per 1 km2. The approximate estimated abundance was 18.98 ± 7.54 individuals. The coefficient of variation was 38%. Population density estimates had a pronounced seasonal dynamics. The minimum value was recorded for the period from 24 June to 23 July (individuals feeding on meadows and ants outside the CFNR core area), and the maximum for the period from 24 July to 22 August (brown bears feeding by berries in the CFNR core area). We found a strong significant correlation between brown bear population density and its relative abundance index (r = 0.81, p < 0.05). It was found that with an increase in the sampling period duration, the estimate of the population density noticeably decreases (r = -0.53, p < 0.05). Parameters of the average travel speed and activity level are a subject to the greatest variability, which determines the significant variability of the day range. In general, the method of population density estimation using REM is highly promising to carry out the brown bear population size estimation in forests and mountain forests, where visual estimations are difficult or impossible.

Keywords

day range, large carnivores, population size, random encounter model, REM, unmarked species, Ursidae, Ursus arctos

Artice information

Received: 08.08.2022. Revised: 28.10.2022. Accepted: 06.11.2022.

The full text of the article
References

Askerov E., Trepet S.A., Eskina T.G., Bibina K.V., Narkevich A.I., Pkhitikov A.B., Zazanashvili N., Akhmadova K. 2022. Estimation of the Population Densities of Species Prey or Competitor to the Leopard (Panthera pardus) in Hyrcan National Park, Azerbaijan. Biology Bulletin 49(7): 225–232. DOI: 10.1134/S1062359022070020
Babina S.G., Epova L.A., Mokryy A.V.
2021. Experience of organization of environmental monitoring in FSBI «Western Baikal Protected Areas».Proceedings of the Mordovia State Nature Reserve 28: 40–50. [In Russian]
Beddari B., Ogurtsov S., Magga S., Kangasniemi J., Fløystad I., Søvik I.H., Sotkajervi T.H., Randa R., Ollila L., Lindgren V., Bakke B.B., Beddari V., Polikarpova N., Ollila T., Hagen S., Eiken H.G. 2020. Monitoring of the Pasvik-Inari-Pechenga brown bear (Ursus arctos) population in 2019 using hair trap. NIBIO Report 6(61). 30 p.
Bellemain E., Swenson J.E., Tallmon D., Brunberg S., Taberlet P. 2005. Estimating Population Size of Elusive Animals with DNA from Hunter-Collected Feces: Four Methods for Brown Bears. Conservation Biology 19(1): 150–161. DOI: 10.1111/j.1523-1739.2005.00549.x
Bobyr G.Ya.1981. Accounting for the number of brown bears in mountains. In: Ecology, morphology and protection of bears in the USSR.Moscow.P. 40–41. [In Russian]
Cappelle N., Howe E.J., Boesch C., Kühl H.S. 2021. Estimating animal abundance and effort–precision relationship with camera trap distance sampling. Ecosphere 12(1): e03299. DOI: 10.1002/ecs2.3299
Chronicles of Nature. 1969–2021. Chronicles of Nature of the Central Forest State Nature Reserve for 1969–2021. Vol. 9–61. Archive of the Central Forest State Nature Biosphere Reserve. [In Russian]
Ćirović D., Hernando M.G., Paunović M., Karamanlidis A.A. 2015. Home range, movements, and activity patterns of a brown bear in Serbia. Ursus 26(2): 79–85. DOI: 10.2192/URSUS-D-15-00010
Clevenger A.P., Purroy F.J., Pelton M.R. 1990. Movement and Activity Patterns of a European Brown Bear in the Cantabrian Mountains, Spain. In: Bears: Their Biology and Management. Vol. 8. P. 205–211. DOI: 10.2307/3872920
Cusack J.J., Dickman A.J., Rowcliffe J.M., Carbone C., MacDonald D.W., Coulson T. 2015. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10(5): e0126373. DOI: 10.1371/journal.pone.0126373
Emlen J.M. 1966. The role of time and energy in food preference. American Naturalist 100(916): 611–617.
Foster R.J., Harmsen B.J. 2012. A critique of density estimation from camera-trap data. Journal of Wildlife Management 76(2): 224–236. DOI: 10.1002/jwmg.275
Garrote G., Pérez de Ayala R., Álvarez A., Martín J., Ruiz M., De Lillo S., Simón M. 2021. Improving the random encounter model method to estimate carnivore densities using data generated by conventional camera-trap design. Oryx 55(1): 99–104. DOI: 10.1017/S0030605318001618
Gilbert N.A., Clare J.D.J., Stenglein J.L., Zuckerberg B. 2020. Abundance estimation of unmarked animals based on camera-trap data. Conservation Biology 35(1): 88–100. DOI: 10.1111/cobi.13517
Gordienko V.N., Gordienko T.A., Kirichenko V.E. 2006. A summary of the aerial census of the brown bear of Kamchatka. In: Kamchatka brown bear: ecology, conservation, and sustainable use. Vladivostok: Dalnauka. P. 56–64. [In Russian]
Gubar Yu.P. 1987. Methods for estimating the number of brown bears at vast areas. In: Bears of the USSR – the state of populations. Rzhev: Rzhev typography. P. 52–55. [In Russian]

Hastie T. 2019. gam: Generalized Additive Models. R package version 1.16.1. Available from https://CRAN.R-project.org/package=gam
Hendry H., Mann C. 2018. Camelot – intuitive software for camera-trap data management. Oryx 52(1): 15. DOI: 10.1017/S0030605317001818
Huber D., Roth H.U. 1993. Movements of European brown bears in Croatia. Acta Theriologica 38(2): 151159.
Jansen P.A., Ahumada J.A., Fegraus E., O'Brien T. 2014. TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. In: P.D. Meek, P.J.S. Fleming, A.G. Ballard, P.B. Banks, A.W. Claridge, J.G. Sanderson, D.E. Swann (Eds.): Camera Trapping in Wildlife Research and Management. Melbourne: CSIRO Publishing. P. 263–270.
Jayasekara D., Mahaulpatha D., Miththapala S. 2021. Population density estimation of meso-mammal carnivores using camera traps without the individual recognition in Maduru Oya National Park, Sri Lanka. Hystrix 32(2): 137–146. DOI: 10.4404/hystrix-00452-2021
Kalinkin Yu.N. 2020. Brown bear Ursus arctos Linnaeus, 1758 of the Altai Reserve. Proceedings of the Mordovia State Natural Reserve 24: 151–160. [In Russian]
Kavčić K., Palencia P., Apollonio M., Vicente J., Šprem N. 2021. Random encounter model to estimate density of mountain‑dwelling ungulate. European Journal of Wildlife Research 67(5): 87. DOI: 10.1007/s10344-021-01530-1
Kelly M.J. 2008. Design, evaluate, refine: camera trap studies for elusive species. Animal Conservation 11(3): 182–184. DOI: 10.1111/j.1469-1795.2008.00179.x
Kendall K.C., Stetz J.B., Roon D.A., Waits L.P., Boulanger J.B., Paetkau D. 2008. Grizzly bear density in Glacier National Park, Montana.Journal of Wildlife Management 72(8): 1693–1705. DOI: 10.2193/2008-007
Kolchin S.A., Volkova E.V., Pokrovskaya L.V., Zavadskaya A.V. 2021. Consequences of a sockeye salmon shortage for the brown bear in the basin of Lake Kurilskoe, Southern Kamchatka. Nature Conservation Research 6(2): 53–65. DOI: 10.24189/ncr.2021.025
Kostin A.A., Eremin Yu.P. 2004. Brown bear (Ursus arctos) on Sakhalin and the Kuril Islands. Bulletin of the Sakhalin Museum 1(11): 366–375. [In Russian]
Lobachev V.S., Chestin I.E., Gubar Yu.P. 1987. The number of brown bears in the USSR (1960–1987). In: Bears of the USSR – the state of populations. Rzhev: Rzhev typography. P. 145–158. [In Russian]
MacArthur R.H., Pianka E.R. 1966. On optimal use of a patchy environment. American Naturalist 100(916): 603–609.
Marcon A., Battocchio D., Apollonio M., Grignolio S. 2019. Assessing precision and requirements of three methods to estimate roe deer density. PLoS ONE 14(10): e0222349. DOI: 10.1371/journ al.pone.0222349
Marcon A., Bongi P., Battocchio D., Apollonio M. 2020. REM: performance on a high-density fallow deer (Dama dama) population. Mammal Research 65(4): 835–841. DOI: 10.1007/s13364-020-00522-x
Mertzanis Y., Ioannis I., Mavridis A., Nikolaou O., Riegler S., Riegler A., Tragos A. 2005. Movements, activity patterns and home range of a female brown bear (Ursus arctos, L.) in the Rodopi Mountain Range, Greece. Belgian Journal of Zoology 135(2): 217221.
Miller D.R. 2020. Distance sampling detection function and abundance estimation. Available from http://github.com/DistanceDevelopment/Distance/
Mowat G., Strobeck C. 2000. Estimating population size of grizzly bears using hair capture, DNA profiling, and mark-recapture analysis. Journal of Wildlife Management 64(1): 183–193. DOI: 10.2307/3802989
Nickerson B.S., Parks L.C. 2019. Estimating population density of black-tailed deer in Northwestern Washington using camera traps and a Random Encounter Model. Management Report. 18 p. Available from https://doi.org/10.13140/RG.2.2.28655.18083
Ogurtsov S.S. 2018. The diet of the brown bear (Ursus arctos) in the Central Forest Nature Reserve (West-European Russia), based on scat analysis data. Biology Bulletin 45(9): 1039–1054. DOI: 10.1134/S1062359018090145
Ogurtsov S.S. 2019. Brown bear (Ursus arctos) habitat suitability and distribution modelling in the southern taiga subzone using the method of maximum entropy. Nature Conservation Research 4(4): 34–64. DOI: 10.24189/ncr.2019.061 [In Russian]
Ogurtsov S.S. 2023. Mammal population density estimation using camera traps based on a random encounter model: theoretical basis and practical recommendations. Nature Conservation Research 8(1): 1–23. DOI: 10.24189/ncr.2023.007
[In Russian]
Ogurtsov S.S., Zheltukhin A.S. 2022. Camera traps monitoring program for large and medium-sized mammals on the example of the Central Forest Nature Reserve. In: Mammals in a changing world: current problems of theriology (XI Congress of the Theriology Society at the Russian Academy of Sciences). Moscow: KMK Scientific Press Ltd. P. 257. [In Russian]
Ogurtsov S.S., Makarova O.A., Polikarpova N.V., Kopatz A., Eiken H.G. Hagen S.B. 2017. The results of the study of the brown bear population in the Russian part of the Pasvik-Inari Trilateral Park according to DNA analysis and data from camera traps. Transactions of the Karelian Research Centre of the Russian Academy of Sciences 9: 58–72. DOI: 10.17076/eco494 [In Russian]
Ogurtsov S.S., Khapugin A.A., Zheltukhin A.S., Fedoseeva E.B., Antropov A.V., Delgado M.D.M., Penteriani V. 2022. Brown bear food-probability models in West-European Russia: on the way to the real Resource Selection Function. Forests 13(8): 1247. DOI: 10.3390/f13081247

Palencia P. 2021. trappingmotion: integrate camera-trapping in movement and behavioural studies. R package version 0.1.1. Available from https://github.com/PabloPalencia/trappingmotion
Palencia P., Vicente J., Barroso P., Barasona J.Á., Soriguer R.C., Acevedo P. 2019. Estimating day range from camera-trap data: the animals' behaviour as a key parameter // Journal of Applied Ecology. Vol. 309(3). P. 182–190. DOI: 10.1111/jzo.12710
Palencia P.
, Rowcliffe J.M., Vicente J., Acevedo P. 2021a. Assessing the camera trap methodologies used to estimate density of unmarked populations. Journal of Applied Ecology 58(8): 15831592. DOI: 10.1111/1365-2664.13913
Palencia P., Fernández-López J., Vicente J., Acevedo P. 2021b. Innovations in movement and behavioural ecology from camera traps: day range as model parameter. Methods in Ecology and Evolution 12(7): 1201–1212. DOI: 10.1111/2041-210X.13609
Palencia P., Barroso P., Vicente J., Hofmeester T.R., Ferreres J., Acevedo P. 2022. Random encounter model is a reliable method for estimating population density of multiple species using camera traps. Remote Sensing in Ecology and Conservation 8(5): 670–682. DOI: 10.1002/rse2.269
Pazhetnov V.S. 1990. Brown bear. Moscow: Agropromizdat. 215 p. [In Russian]
Pazhetnov V.S., Pazhetnov S.V., Bondar D.G. 2014. Methodological manual for accounting for the number, sex, age and size composition of the brown bear population according to encounter cards. Velikie Luki: Velikie Luki Publishing. 39 p. [In Russian]
Pettigrew P., Sigouin D., St-Laurent M.H. 2021. Testing the precision and sensitivity of density estimates obtained with a camera-trap method revealed limitations and opportunities. Ecology and Evolution 11(12): 7879–7889. DOI: 10.1002/ece3.7619
Pikunov D.G. 1987. Accounts of the number of bears in the mountain forests of the south of the Far East. In: Ecology of bears. Novosibirsk: Nauka. P. 174–184. [In Russian]
Poole K.G., Mowat G., Fear D.A. 2001. DNA-based population estimate for grizzly bears Ursus arctos in northeastern British Columbia, Canada. Wildlife Biology 7(2): 105–115. DOI: 10.2981/wlb.2001.014
Pop I.M., Bereczky L., Chiriac S., Iosif R., Nita A., Popescu V.D., Rozylowicz L. 2018. Movement ecology of brown bears (Ursus arctos) in the Romanian Eastern Carpathians. Nature Conservation 26: 15–31. DOI: 10.3897/natureconservation.26.22955
Popova E., Ahmed A., Stepanov I., Zlatanova D., Genov P. 2017. Estimating brown bear population density with camera traps in Central Balkan Mountain, Bulgaria. Annuaire de l'Université de Sofia “St. Kliment Ohridski" Faculte de Biologie 103(4): 145–151.
Priklonskiy S.G. 1967. Distribution and abundance of the brown bear and lynx in the middle zone of the European part of the RSFSR. In: Proceedings of the Oksky State Nature Reserve 7: 69–115. [In Russian]
Puzachenko Yu.G., Zheltukhin A.S., Kozlov D.N., Korablev N.P., Fedyaeva M.V., Puzachenko M.Yu., Siunova E.V. 2016. Central Forest State Nature Biosphere Reserve. Popular science essay. 2nd ed. Tver: Pechatnya Press. 80 p. [In Russian]
R Core Team. 2020. R: a language and envi­ronment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from http://www.R-project.org
Rovero F., Marshall A.R. 2009. Camera trapping photographic rate as an index of density in forest ungulates. Journal of Applied Ecology 46(5): 1011–1017. DOI: 10.1111/j.1365-2664.2009.01705.x
Rovero F., Zimmermann F. 2016. Camera trapping for wildlife research. Exeter: Pelagic Publishing Ltd. 320 p.
Rovero F., Zimmermann F., Berzi D., Meek P. 2013. “Which camera trap type and how many do I need?" A review of camera features and study designs for a range of wildlife research applications. Hystrix 24(2): 148–156. DOI: 10.4404/hystrix-24.2-8789
Rowcliffe J.M. 2019. Activity: animal activity statistics. R package version 1.3. Available from https://CRAN.R-project.org/package=activity
Rowcliffe J.M. 2020. REM analysis using camtools. Available from https://github.com/MarcusRowcliffe/camtools
Rowcliffe J.M. 2021. Protocol for generating distance data from camera trap images using a simple computer vision approach, CTtracking V0.3.2. Available from https://github.com/MarcusRowcliffe/CTtracking
Rowcliffe J.M., Field J., Turvey S.T., Carbone C. 2008. Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology 45(4): 1228–1236. DOI: 10.1111/j.1365-2664.2008.01473.x
Rowcliffe J.M., Carbone C., Jansen P.A., Kays R., Kranstauber B. 2011. Quantifying the sensitivity of camera traps: an adapted distance sampling approach. Methods in Ecology and Evolution 2(5): 464–476. DOI: 10.1111/j.2041-210X.2011.00094.x
Rowcliffe J.M., Carbone C., Kays R., Kranstauber B., Jansen P.A. 2012. Bias in estimating animal travel distance: the effect of sampling frequency. Methods in Ecology and Evolution 3(4): 653–662. DOI: 10.1111/j.2041-210X.2012.00197.x
Rowcliffe J.M., Kays R., Carbone C., Jansen P.A. 2013. Clarifying assumptions behind the estimation of animal density from camera trap rates. Journal of Wildlife Management 77(5): 876. DOI: 10.1002/jwmg.533
Rowcliffe J.M., Kays R., Kranstauber B., Carbone C., Jansen P.A. 2014. Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution 5(11): 1170–1179. DOI: 10.1111/2041-210X.12278
Rowcliffe J.M., Jansen P.A., Kays R., Kranstauber B., Carbone C. 2016. Wildlife speed cameras: measuring animal travel speed and day range using camera traps. Remote Sensing in Ecology and Conservation 2(2): 84–94. DOI: 10.1002/rse2.17
Sawaya M.A., Stetz J.B., Clevenger A.P., Gibeau M.L., Kalinowski S.T. 2012. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling. PLoS ONE 7(5): e34777. DOI: 10.1371/journal.pone.0034777
Schaus J., Uzal A., Gentle L.K., Baker P.J., Bearman-Brown L., Bullion S., Gazzard A., Lockwood H., North A., Reader T., Scott D.M., Sutherland C.S., Yarnell R.W. 2020. Application of the Random Encounter Model in citizen science projects to monitor animal densities. Remote Sensing in Ecology and Conservation 6(4): 514–528. DOI: 10.1002/rse2.153
Seber G.A.F. 1982. The estimation of animal abundance and related parameters. New York: Macmillan Pub. Co. 672 p.
Seryodkin I.V. 2020. Daily movements of Brown bears (Ursus arctos) in Kamchatka and Sakhalin. Bulletin of Tomsk State University. Biology Series 49: 107–127. DOI: 10.17223/19988591/49/6 [In Russian]
Seryodkin I.V., Kostyria A.V., Goodrich J.M. 2014. Daily and seasonal movements of brown bear in the Sikhote-Alin. Bulletin of Tver State University. Series: Biology and Ecology 4: 233–240. [In Russian]
Seryodkin I.V., Paczkowski J., Borisov M.Y., Petrunenko Y.K. 2017. Home ranges of brown bears on the Kamchatka peninsula and Sakhalin Island. Contemporary Problems of Ecology 10(6): 599–611. DOI: 10.1134/S1995425517060129
Seryodkin I.V., Paczkowski J., Goodrich J.M., Petrunenko Yu.K. 2021. Locations of dens with respect to space use, pre- and post-denning movements of brown bears in the Russian Far East. Nature Conservation Research 6(3): 97–109. DOI: 10.24189/ncr.2021.041
Shtarev Yu.F.1974. Towards the ecology of the brown bear.Proceedings of the Mordovia State Nature Reserve 6: 50–78. [In Russian]
Sobansky G.G.
2005. Mammals of Altai. Large carnivores and ungulates. Barnaul: Altai Publishing. 373 p. [In Russian]
Soutyrina S.V., Riley M.D., Goodrich J.M., Seryodkin I.V., Miquelle D.G. 2013. A population estimate of Amur tigers using camera traps. Vladivostok: Dalnauka. 156 p. [In Russian]
Todorov V.R., Zlatanova D.P., Valchinkova K.V. 2020. Home range, mobility and hibernation of brown bears (Ursus arctos, Ursidae) in areas with supplementary feeding. Nature Conservation Research 5(4): 1–15. DOI: 10.24189/ncr.2020.050
Trepet S.A., Eskina T.G., Pkhitikov A.B., Kudaktin A.N., Bibina K.V. 2020. Modern Condition and Population Dynamics of the Brown Bear (Ursus arctos meridionalis) in the Western Caucasus. Biology Bulletin 47(8): 1022–1031. DOI: 10.1134/S1062359020080142
Ustinov S.K.1993. Baikal Region. In: Bears: brown bear, polar bear, Asiatic black bear.Moscow: Nauka. P. 275–296. [In Russian]
Wearn O.R., Glover-Kapfer P. 2017. Camera-trapping for conservation: a guide to best-practices. WWF Conservation Technology Series 1(1). Woking: WWF-UK. 181 p.
Wearn O.R., Bell T.E.M., Bolitho A., Durrant J., Haysom J.K., Nijhawan S., Thorley J., Rowcliffe M. 2022. Estimating animal density for a community of species using information obtained only from camera‐traps. Methods in Ecology and Evolution 13(10): 2248–2261. DOI: 10.1111/2041-210x.13930
Williams B., Nichols J., Conroy M. 2002. Analysis and management of animal populations. San Diego: Academic Press. 817 p.
Yudin V.G.1993. Sakhalin and the Kuril Islands. In: Bears: brown bear, polar bear, Asiatic black bear.Moscow: Nauka.P. 403–416. [In Russian]
Yurgenson P.B. 1937. To the distribution and biology of commercial fauna at the Volga-Dvina watershed. Proceedings of the Central Forest State Nature Reserve 2: 281–289. [In Russian]
Zero V.H., Sundaresan S.R., O'Brien T.G., Kinnaird M.F. 2013. Monitoring an Endangered savannah ungulate, Grevy's zebra Equus grevyi: choosing a method for estimating population densities. Oryx 47(3): 410–419. DOI: 10.1017/S0030605312000324