Article

Article name DAILY ACTIVITY PATTERNS OF LARGE AND MEDIUM-SIZED MAMMALS BASED ON CAMERA TRAPS DATA IN THE CENTRAL FOREST NATURE RESERVE, VALDAI UPLAND, RUSSIA
Authors

Sergey S. Ogurtsov, Researcher of the Central Forest State Nature Biosphere Reserve; Russia (172521, Tver region, Nelidovo district, Zapovednyi settlement); e-mail: etundra@mail.ru
Anatoliy S. Zheltukhin, PhD, Deputy Director on Scientific work of the Central Forest State Nature Biosphere Reserve (Russia, 172521, Tver region, Nelidovo district, Zapovednyi settlement); e-mail: azheltukhin@mail.ru
Ivan P. Kotlov, Researcher of the A.N. Severtsov Institute of Ecology and Evolution of RAS (Russia, 123181, Moscow, Street marsh. Katukova, 21-1-117); e-mail: ikotlov@gmail.com

Reference to article

Ogurtsov S.S., Zheltukhin A.S., Kotlov I.P. 2018. Daily activity patterns of large and medium-sized mammals based on camera traps data in the Central Forest Nature Reserve, Valdai Upland, Russia. Nature Conservation Research 3(2): 68–88. https://dx.doi.org/10.24189/ncr.2018.031

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2018.031
Abstract

Here are presented the results of the analysis of daily activity patterns obtained from the data of camera traps for five large mammals (elk Alces alces, wild boar Sus scrofa, brown bear Ursus arctos, grey wolf Canis lupus, Eurasian lynx Lynx lynx) and three medium ones (European badger Meles meles, raccoon dog Nyctereutes procyonoides, mountain hare Lepus timidus) for the territory of the Central Forest Nature Reserve, Valdai Upland, Russia. Data were collected in the period 2010–2017 and the trap effort was 30 158 camera days from 21 locations. Most of the mammals surveyed showed activity at night and twilight hours (71% of the pictures). The hare was most active among all and dominant at night. In many respects it is similar to the activity of a raccoon dog, which type can be defined as nocturnal too. Unlike a hare, a raccoon dog has a weak peak in the daytime and less activity in the night. Badgers movements are confined to the twilight and nighttime. The share of nocturnal activity of large ungulates such as elk and wild boar was approximately the same and amounted to about 45% of all registrations. The wild boar is slightly more active during the day and in the evening and is not active at all in the morning. The elk is active in the morning, and in the daytime and to a lesser extent in the evening. The lynx and the bear have similar cathemeral activity patterns: almost half of all their meetings occurred at daylight hours and only slightly – less than 40% – at night. The brown bear had the maximum number of registrations in the daytime among all the studied species. Despite the fact that the main object of lynx feeding in the reserve is the hare, there was no high degree of overlap between them (γˆ = 0.75). In the group of large carnivores, the wolf was noticeably distinguished, more than half of its registrations were at night, and a third – on daytime. Daily activities of the wolf and its main prey elk showed a large overlap (γˆ = 0.89). The seasonal variations of daily activity of all species were also shown. According to the results of factor analysis, each of the studied species was divided into one of three separate groups. The first group included species with a tendency to nocturnal activity (wolf, elk, hare, badger, and raccoon dog), the second group – cathemeral animals (bear and lynx). In the third group was only the wild boar, whose activity was associated with the evening hours. This is the first long-term continuous camera trap survey in Russia and it provides detailed daily activity patterns for multiple large and medium-sized sympatric mammals.

Keywords

activity patterns, camera traps, Central Forest Nature Reserve, daily activity, large carnivores, noninvasive methods

Artice information

Received: 12.02.2018

The full text of the article
References

Alexy K.J., Brunjes K.J., Gassett J.W., Miller K.V. 2003. Continuous remote monitoring of gopher tortoise burrow use. Wildlife Society Bulletin 31: 1240–1243.
Ball E.R. 1980. Time-lapse cameras as an aid in studying grizzly bears in northwest Wyoming. In: Fourth International Conference on Bear Research and Management (February 1977, Kalispell, MT, USA). Vol. 4. Morges, Switzerland: International Association for Bear Research and Management. P. 331–335. DOI: 10.2307/3872888
Bridges A.S., Vaughan M.R., Klenzendorf S. 2004. Seasonal variation in American black bear Ursus americanus activity patterns: quantification via remote photography. Wildlife Biology 10: 277–284.
Bridges A.S., Noss A.J. 2011. Behavior and activity patterns. In: A.F. O'Connell, J.D. Nichols, U.K. Karanth (Eds.): Camera traps in animal ecology: methods and analyses. 1st edition. New York: Springer. P. 57–69. DOI: 10.1007/978-4-431-99495-4
Brown J., Gehrt S.D. 2009. The basics of using remote cameras to monitor wildlife. Fact sheet. Agriculture and natural resources. Columbus: Ohio State University Extension. 8 p.
Bu H., Wang F., McShea W.J., Lu Z., Wang D., Li S. 2016. Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of southwest China. PLoS ONE 11(10): e0164271. DOI: 10.1371/journal.pone.0164271
Carthew S.M., Slater E. 1991. Monitoring animal activity with automated photography. Journal of Wildlife Management 55(4): 689–692. DOI: 10.2307/3809519
Chen M-T., Tewes M.E., Pei K.J., Grassman Jr. L.I. 2009. Activity patterns and habitat use of sympatric small carnivores in southern of Taiwan. Mammalia 73(1): 20–26. DOI: 10.1515/MAMM.2009.006
Claridge A.W., Mifsud G., Dawson J., Saxon M.J. 2004. Use of infrared digital cameras to investigate the behavior of cryptic species. Wildlife Research 31(6): 645–650. DOI: 10.1071/WR03072
Clevenger A.P., Purroy F.J., Pelton M.R. 1990. Movement and activity patterns of a European brown bear in the Cantabrian Mountains, Spain. In: Eighth International Conference on Bear Research and Management (Victoria, British Columbia, Canada, February 1989). Vol. 8. International Association of Bear Research and Management. P. 205–211. DOI: 10.2307/3872920
Craighead J.J., Sumner J.S., Mitchell J.A. 1995. The grizzly bears of Yellowstone. Their ecology in the Yellowstone Ecosystem, 1959–1992. Washington, D.C.: Island Press. 556 p.
Crowley S.M., Hodder D.P., Larse K.W. 2013. Canada lynx (Lynx canadensis) detection and behavior using remote cameras during the breeding season. Canadian Field-Naturalist 127(4): 310–318. DOI: 10.22621/cfn.v127i4.1512
Di Bitetti M.S., Paviolo A., De Angelo C. 2006. Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. Journal of Zoology 270(1): 153–163. DOI: 10.1111/j.1469-7998.2006.00102.x
Foster V.C., Sarmento P., Sollmann R., Tôrres N., Jácomo A.T.A., Negrões N., Fonseca C., Silveira L. 2013. Jaguar and puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica 45(3): 373–379. DOI: 10.1111/btp.12021
Garshelis D.L., Pelton M.R. 1980. Activity of black bears in the Great Smoky Mountains National Park. Journal of Mammalogy 61(1): 8–19. DOI: 10.2307/1379952
Gerber B.D., Karpanty S.M., Randrianantenaina J. 2012. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. Journal of Mammalogy 93(3): 667–676. DOI: 10.1644/11-mamm-a-265.1
Gillingham M.P., Klein D.R. 1992. Late-winter activity patterns of moose (Alces alces gigas) in western Alaska. Canadian Journal of Zoology 70(2): 293–299. DOI: 10.1139/z92-044
Gómez H., Wallace R.B., Ayala G., Tejada R. 2005. Dry season activity patterns for some Amazonian mammals. Studies of Neotropical Fauna and the Environment 40(2): 91–95. DOI: 10.1080/01650520500129638
Goszczyński J., Juszko S., Pacia A., Skoczyńska J. 2005. Activity of badgers (Meles meles) in Central Poland. Mammalian Biology 70(1): 1–11. DOI: 10.1078/1616-5047-00171
Heurich M., Hilger A., Küchenhoff H., Andrén H., Bufka L., Krofel M., Mattisson J., Odden J., Persson J., Rauset G.R., Schmidt K., Linnell J.D.C. 2014. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9(12): e114143. DOI: 10.1371/journal.pone.0114143
Hernández-SaintMartín A.D., Rosas-Rosas O.C., Palacio-Núñez J., Tarango-Arámbula L.A., Clemente-Sánchez F., Hoogesteijn A.L. 2013. Activity patterns of jaguar, puma and their potential prey in San Luis Potosí, Mexico. Acta Zoológica Mexicana 29(3): 520–533.
Homolka M. 1986. Daily activity pattern of the European hare (Lepus europaeus). Folia Zoologica 35(1): 33–42.
Ikeda T., Uchida K., Matsuura Y., Takahashi H., Yoshida T., Kaji K., Koizumi I. 2016. Seasonal and diel activity patterns of eight sympatric mammals in Northern Japan revealed by an intensive camera-trap survey. PLoS ONE 11(10): e0163602. DOI: 10.1371/journal.pone.0163602
Kaczensky P., Huber D., Knauer F., Roth H., Wagner A., Kusak J. 2006. Activity patterns of brown bears (Ursus arctos) in Slovenia and Croatia. Journal of Zoology 269(4): 474–485. DOI: 10.1111/j.1469-7998.2006.00114.x
Kelly M.J., Holub E.L. 2008. Camera trapping of carnivores: trap success among camera types and across species and habitat selection by species on Salt Pond Mountain Giles County, Virginia. Northeastern naturalist 15(2): 249–262. DOI: 10.1656/1092-6194(2008)15[249:CTOCTS]2.0.CO;2
Kochetkov V.V. 1991. Wolf and moose: trend of behavior of predator and prey. In: 22-nd International Ethological Conference. Kyoto, Japan.
Kolbe J.A., Squires J.R. 2007. Circadian activity patterns of Canada lynx in western Montana. Journal of Wildlife Management 71(5): 1607–1611. DOI: 10.2193/2005-727
Koprowski J.L., Corse M.C. 2005. Time budgets, activity periods, and behavior of Mexican fox squirrels. Journal of Mammalogy 86(5): 947–952. DOI: 10.1644/1545-1542(2005)86[947:TBAPAB]2.0.CO;2
Lariviere S., Huot J., Samson C. 1994. Daily activity patterns of female black bears in a northern mixed-forest environment. Journal of Mammalogy 75(3): 613–620. DOI: 10.2307/1382508
Lendrum P., Crooks R.K., Wittemyer G. 2017. Changes in circadian activity patterns of a wildlife community post high-intensity energy development. Journal of Mammalogy 98(5): 1265–1271. DOI: 10.1093/jmammal/gyx097
Linkie M., Ridout M.S. 2011. Assessing tiger-prey interactions in Sumatran rainforests. Journal of Zoology 284(3): 224–229. DOI: 10.1111/j.1469-7998.2011.00801.x
López González C.A., Lorenzana Piña G. 2002. Carrion use by jaguars (Panthera onca) in Sonora, Mexico. Mammalia 66(4): 603–605.
Loskutov A.V., Pavlov M.P., Puchkovskiy S.V. 1993. The Volga-Kama region. In: M.A. Vaisfeld, I.E. Chestin (Eds.): Bears: brown bear, polar bear, Asian black bear. Distribution, ecology, use and protection. Moscow: Nauka. P. 132–135. [In Russian]
Lucherini M., Reppucci J.I., Walker R.S., Villalba M.L., Wurstten A., Gallardo G., Iriarte A., Villalobos R., Perovic P. 2009. Activity pattern segregation of carnivores in the High Andes. Journal of Mammalogy 90(6): 1404–1409. DOI: 10.1644/09-MAMM-A-002R.1
Lund U., Agostinelli C., Arai H., Gagliardi A., Portugues E.G., Giunchi D., Irisson J.O., Pocernich M., Rotolo F. 2017. Circular statistics. R package version 0.4–93. Available from: https://cran.r-project.org/package=circular
MacArthur R.H., Pianka E.R. 1966. On optimal use of a patchy environment. American Naturalist 100: 603–609. DOI: 10.1086/282454
Maffei L., Paredes R., Segundo A., Noss A.J. 2007. Home range and activity of two sympatric fox species in the Bolivian dry Chaco. Canid News 10.4 Available from: http://www.canids.org/canidnews/10/Sympatric_foxes_in_Bolivia.pdf
Manly B.F.J., McDonald L.L., Thomas D.L., McDonald T.L., Erickson W.P. 2002. Resource selection by animals: statistical design and analysis for field studies. 2nd edition. Netherlands: Springer. 221 p. DOI: 10.1007/978-94-011-1558-2
Marcon A., Chiriac S., Corradini A., Pop I.-M., Oliveira T., Sin T., Gazzola A. 2017. Diel activity overlap of wolf and sympatric large mammals as revealed by a camera-trapping survey in the Eastern Carpathians, Romania. In: 10th Baltic Theriological conference (27–30 September 2017). Tartu. Estonia. P. 54.
Matyukhina D.S., Vitkalova A.V., Rybin A.N., Aramilev V.V., Shevtsova E.I., Miquelle D.G. 2016. Camera-trap monitoring of Amur Tiger (Panthera tigris altaica) in southwest Primorsky Krai, 2013–2016: preliminary results. Nature Conservation Research 1(3): 36–43. DOI: 10.24189/ncr.2016.025
Meek P.D., Ballard G., Fleming P. 2012. An introduction to camera trapping for wildlife surveys in Australia. Canbera, Australia: Invasive Animals Cooperative Research Centre. Forest Road, Orange: NSW Department of Primary Industries. 85 p.
Meek P.D., Ballard G., Claridge A., Kays R., Moseby K., O'Brien T., O'Connell A., Sanderson J., Swann D., Tobler M., Townsend S. 2014. Recommended guiding principles for reporting on camera trapping research. Biodiversity and Conservation 23(9): 2321–2343. DOI: 10.1007/s10531-014-0712-8
Meredith M., Ridout M.S. 2017. Estimates of coefficient of overlapping for animal activity patterns. R package version 0.3.0. Available from: https://cran.r-project.org/package=overlap
Mohamad S.W., Darmaraj M.R. 2009. A general guide to camera-trapping large mammals in tropical rainforests with particular reference to tigers. WWF-Malaysia. 37 p.
Mohd-Azlan J., Sharma D.S.K. 2006. The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia. Oryx 40(1): 36–41. DOI: 10.1017/S0030605306000147
Munro R.H.M., Nielsen S.E., Price M.H., Stenhouse G.B., Boyce M.S. 2006. Seasonal and diel patterns of grizzly bear diet and activity in West-Central Alberta. Journal of Mammalogy 87(6): 1112–1121. DOI: 10.1644/05-MAMM-A-410R3.1
Niedballa J., Courtiol A., Sollmann R., Mathai J., Wong S.T., Nguyen A.T.T., Mohamed A., Tilker A., Wilting A. 2016. Camera trap data management and preparation of occupancy and spatial capture-recapture analyses. R package version 0.99.9. Available from: https://cran.r-project.org/package=camtrapR
Ogurtsov S.S., Zheltukhin A.S. 2017. Application of camera traps to the study of a brown bear (Ursus arctos) population in the Central Forest Nature Reserve. Zoologicheskii zhurnal 96(3): 360–372. DOI: 10.7868/S0044513417030084 [In Russian]
Ogurtsov S.S. 2018. The diet of the brown bear (Ursus arctos) in the Central Forest Nature Reserve (Russia), based on scat analysis data. Zoologicheskii zhurnal 97(4): 486–502. DOI: 10.7868/S0044513418040104 [In Russian]
Olchev A., Novenko E., Popov V., Pampura T., Meili M. 2017. Evidence of temperature and precipitation change over the past 100 years in a high-resolution pollen record from the boreal forest of Central European Russia. The Holocene 27(5): 740–751. DOI: 10.1177/0959683616670472
Partridge S., Smith T., Lewis T. 2009. Black and brown bear activity at selected coastal sites in Glacier Bay national park and preserve. Alaska: a preliminary assessment using noninvasive procedures. Open file report. Reston, Virginia: U.S. Geological Survey. 73 p.
Pépin D., Cargnelutti B. 1994. Individual variations of daily activity patterns in radiotracked European hares during winter. Acta Theriologica 39(4): 399–409.
Podolski I., Belotti E., Bufka L., Reulen H., Heurich M. 2013. Seasonal and daily activity patterns of free-living Eurasian lynx Lynx lynx in relation to availability of kills. Wildlife Biology 19(1): 69–77. DOI: 10.2981/12-049
Porfirio G., Foster V.C., Fonseca C., Sarmento P. 2016. Activity patterns of ocelots and their potential prey in the Brazilian Pantanal. Mammalian Biology-Zeitschrift für Säugetierkunde 81(5): 511–517. DOI: 10.1016/j.mambio.2016.06.006
Puzachenko Yu.G., Zheltukhin A.S., Kozlov D.N., Korablyov N.P., Fedyaeva M.V., Puzachenko M.Ju., Siunova E.V. 2016. Central Forest State Nature Biosphere Reserve. Popular scientific booklet. 2nd edition. Tver: «Pechatnya» publishing house. 80 p. [In Russian]
R Development Core Team. 2015. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: http://www.R-project.org
Ridout M.S., Linkie M. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics 14(3): 322–337. DOI: 10.1198/jabes.2009.08038
Romero-Muñoz A., Maffei L., Cuéllar E., Noss A.J. 2010. Temporal separation between jaguar and puma in the dry forests of southern Bolivia. Journal of Tropical Ecology 26(3): 303–311. DOI: 10.1017/S0266467410000052
Rosalino L.M., Macdonald D.W., Santos-Reis M. 2005. Activity rhythms, movements and patterns of sett use by badgers Meles meles in a Mediterranean woodland. Mammalia 69(3–4): 395–408. DOI: 10.1515/mamm.2005.031
Ross J., Hearn A.J., Johnson P.J., Macdonald D.W. 2013. Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk. Journal of Zoology 290(2): 96–106. DOI: 10.1111/jzo.12018
Roth H.U. 1983. Diel activity of a remnant population of European brown bears. In: Fifth International Conference on Bear Research and Management (Madison, Wisconsin, USA, February 1980). Vol. 5. International Association of Bear Research and Management. P. 223–229. DOI: 10.2307/3872541
Roth H.U., Huber D. 1986. Diel activity of brown bears in Plitvice Lakes National Park. Yugoslavia. In: Sixth International Conference on Bear Research and Management (Grand Canyon, Arizona, USA, February 1983). Vol. 6. International Association of Bear Research and Management. P. 177–181. DOI: 10.2307/3872822
Rovero F., Martin E., Rosa M., Ahumada J.A., Spitale D. 2014. Estimating species richness and modelling habitat preferences of tropical forest mammals from camera trap data. PLoS ONE 9(7): e103300. DOI: 10.1371/journal.pone.0103300
Rozhnov V.V., Naidenko S.V., Hernandez-Blanco J.A., Lukarevskii V.S., Sorokin P.A., Maslov M.V., Litvinov M.N., Kotlyar A.K. 2012. Seasonal changes in the abundance of Amur tiger preys: an experience of applying a matrix of photocameras. Zoologicheskii zhurnal 91(6): 746–756. [In Russian]
Schai-Braun S., Rödel H.G., Hackländer K. 2012. The influence of daylight regime on diurnal locomotor activity patterns of the European hare (Lepus europaeus) during summer. Mammalian Biology 77(6): 434–440. DOI: 10.1016/j.mambio.2012.07.004
Schmidt K. 1999. Variation in daily activity of the free-living Eurasian lynx (Lynx lynx) in Białowieża Primeval Forest, Poland. Journal of Zoology 249(4): 417–425. DOI: 10.1111/j.1469-7998.1999.tb01211.x
Schoener T.W. 1971. Theory of feeding strategies. Annual Review of Ecology and Systematics 2: 369–404. DOI: 10.1146/annurev.es.02.110171.002101
Seganfreddo S., Bertolini F., Vezzaro S., Vendramin A., Romani T., Madinelli A., Pesaro S., Filacorda S. 2017. Integration of activity sensor, GPS monitoring and phototrapping to describe brown bear (Ursus arctos) behaviour in the Eastern Alps. In: XXVII Convegno Nazionale della Società Italiana di Etologia (Calci, 18–21 June 2017). Calci. P. 7.
Seryodkin I.V., Kostyria A.V., Goodrich J.M., Miquelle D.G. 2013. Daily activity patterns of brown bear (Ursus arctos) of the Sikhote-Alin mountain range (Primorskiy Krai, Russia). Russian Journal of Ecology 44(1): 50–55. DOI: 10.1134/S1067413613010104
Sidorchuk N.V., Rozhnov V.V. 2010. European badger in Darwin reserve. Traditional and new methods in studying of ecology and behavior of denning predators. Moscow: KMK Scientific Press Ltd. 122 p. [In Russian]
Sidorchuk N.V., Volchenko A.E., Rozhnov V.V. 2014. Daily activity of the European badger (Meles meles Linnaeus, 1758) (Mustelidae, Mammalia) at settlements in several populations of European Russia. Povolzhsky Ecological Journal 4: 601–610. [In Russian]
Sidorchuk N.V., Rozhnov V.V., Maslov M.V. 2016. Daily activity of Asian badger (Meles leucurus amurensis Schrenck 1859) settlements in Ussuriisky Reserve. Scientific Notes of Petrozavodsk State University 2(155): 42–48. [In Russian]
Sokolov V.E., Kuznetsov G.V. 1978. Daily rhythms activity of mammalian. Cytological and ecological aspects. Moscow: Nauka. 264 p. [In Russian]
Soutyrina S.V., Riley M.D., Goodrich J.M., Seryodkin I.V., Miquelle D.G. 2013. A population estimate of Amur tiger using camera traps. Vladivostok: Dalnauka. 156 p. [In Russian]
Stelmock J.J., Dean F.C. 1986. Brown bear activity and habitat use in Denali national park – 1980. In: Sixth International Conference on Bear Research and Management (Grand Canyon, Arizona, USA, February 1983). Vol. 6. International Association of Bear Research and Management. P. 155–167. DOI: 10.2307/3872820
TEAM Network. 2011. Terrestrial vertebrate (camera trap) monitoring protocol implementation manual. Tropical Ecology Assessment and Monitoring Network. Virginia, USA: Centre for Applied Biodiversity Science. 69 p.
Weckel M., Giuliano W., Silver S. 2006. Jaguar (Panthera onca) feeding ecology: distribution of predator and prey through time and space. Journal of Zoology 270(1): 25–30. DOI: 10.1111/j.1469-7998.2006.00106.x
Worton B.J. 1989. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1): 164–168. DOI: 10.2307/1938423
Yamazaki K., Kozakai C., Kasai S., Goto Yu., Koike S., Furubayashi K. 2008. A preliminary evaluation of activity-sensing GPS collars for estimating daily activity patterns of Japanese black bears. Ursus 19(2): 154–161. DOI: 10.2192/07GR009.1
Zaccaroni M., Biliotti N., Buccianti A., Calieri S., Ferretti M., Genghini M., Riga F., Trocchi V., Dessì-Fulgheri F. 2013. Winter locomotor activity patterns of European hares (Lepus europaeus). Mammalian Biology 78(6): 482–485. DOI: 10.1016/j.mambio.2013.07.001
Zar J. 2010. Biostatistical analysis. New Jersey: Pearson Prentice Hall. 944 p.
Zaumyslova O.Yu., Bondarchuk S.N. 2017. Assessment of the long-tailed goral (Naemorhedus caudatus: Bovidae) population status in the Sikhote-Alin reserve using camera-traps. Nature Conservation Research 2(Suppl. 1): 151–163. DOI: 10.24189/ncr.2017.024 [In Russian]
Zheltukhin A.S. 1987. Lynx of the southern taiga of the Upper Volga (ecology, behavior, issues of management and protection). PhD thesis abstract. Moscow. 15 p. [In Russian]
Zoller H., Drygala F. 2013. Activity patterns of the invasive raccoon dog (Nyctereutes procyonoides) in North East Germany. Folia Zoologica 62(4): 290–296. DOI: 10.25225/fozo.v62.i4.a6.2013