Article

Article name IMPACT OF THE CONFLICT INTERACTIONS AND SOCIAL LEARNING ON THE HIERARCHY STRUCTURE IN CAPTIVE MALES OF MOSCHUS CHRYSOGASTER (MOSCHIDAE)
Authors

Xiaolong Wang, MSc., Postgraduate at School of Ecology and Environment, Renmin University of China (100872, China, Beijing); iD ORCID: https://orcid.org/0009-0005-0202-3307; e-mail: 2022101824@ruc.edu.cn
Jiayi Wu, MSc., PhD Student at School of Ecology and Environment, Renmin University of China (100872, China, Beijing); iD ORCID: https://orcid.org/0000-0001-5846-0294; e-mail: fiveaone@163.com
Xiaoping Lu, MSc., PhD Student at School of Ecology and Environment, Renmin University of China (100872, China, Beijing); iD ORCID: https://orcid.org/0000-0001-8726-6335; e-mail: luxiaop_1881@163.com
Vasili Shakun, PhD, Professor at Scientific and Practical Center for Bioresources, National Academy of Sciences (220072, Belarus, Minsk); iD ORCID: https://orcid.org/0000-0002-0807-3218; e-mail: terioforest@tut.by
Irena Solovej, PhD, Professor at Scientific and Practical Center for Bioresources, National Academy of Sciences (220072, Belarus, Minsk); iD ORCID: https://orcid.org/0000-0002-6768-5089; e-mail: soloveji@tut.by
Xiuxiang Meng, PhD, Professor at School of Ecology and Environment, Renmin University of China (100872, China, Beijing); Professor at School of Ecology and Environment, Tibet University (850000, China, Tibet Autonomous Region, Lasa); Professor at School of Animal Science, Xichang University (615000, China, Sichuan Province); iD ORCID: https://orcid.org/0000-0002-8930-032X; e-mail: meng2014@ruc.edu.cn

Reference to article

Wang X., Wu J., Lu X., Shakun V., Solovej I., Meng X. 2024. Impact of the conflict interactions and social learning on the hierarchy structure in captive males of Moschus chrysogaster (Moschidae). Nature Conservation Research 9(3): 61–71. https://dx.doi.org/10.24189/ncr.2024.021

Electronic Supplement 1. Additional data for the paper of Wang et al. (2024) (Link).

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2024.021
Abstract

Moschus chrysogaster (hereafter – musk deer) is an endemic to the Qinghai-Tibet Plateau and surrounding areas in China. Due to historical overutilisation and habitat degradation and loss, the musk deer is endangered and faces serious threats to its survival. Besides in situ conservation, musk deer farming is an important and effective means for ex situ conservation and sustainable supply of musk resources. Wild musk deer are solitary and highly territorial, but in captivity they are subjected to intensive farming practices that confine them to a limited space, leading to the development of a hierarchy structure. This study was carried out from January 2021 to December 2023 at the Musk Deer Farm in Zhuanglang County, Gansu Province, China. Focal sampling and all-occurrence recording were used to measure conflict behaviour of captive musk deer. Social network analysis was used to study the relationships between social conflict and social learning within the captive community. Our finding revealed a significant positive correlation between the hierarchy rank of the conflict initiator and the receiver, and individuals tended to initiate conflict against individuals close to their ranks, which reflected the individual identification of the hierarchy within the community. The social learning behaviour of musk deer in various ranks was significantly different. The social learning behaviour of middle rank (40.7%) was significantly higher than that of high rank (14.5%) and low rank (14.0%). Compared with the social learning behaviour of musk deer before conflict (37.9%), the social learning behaviour of musk deer after conflict (62.1%) was significantly increased, but there was no significant difference in non-social learning behaviour before conflict (46.7%) and after conflict (53.3%). This research reveals the majority of conflicts unfolding among the higher ranks of the captive population. To improve musk deer farming, it is imperative to assess the conflict potential and sociality of individuals within the broader hierarchy. In addition, we found a significant surge in socially learning behaviours among musk deer post-conflict, indicative of the essential spread of information on individual rank and fighting capabilities within the captive population. Recognising the pronounced social learning in captive individuals with middle ranks, managers should focus on these key members. The alleviating conflict level by rationally translocating individuals while maintaining a hierarchical structure within the group is critical to the successful musk deer conservation and farming.

Keywords

Alpine musk deer, ex situ conservation, hierarchy structure, non-social learning behaviour, social learning behaviour, social network

Artice information

Received: 06.05.2024. Revised: 13.07.2024. Accepted: 28.07.2024.

The full text of the article
References

Altmann J. 1974. Observational Study of Behavior: Sampling Methods. Behaviour 49(3/4): 227–267. DOI: 10.1163/156853974X00534
Abril-de-Abreu R., Cruz A.S., Oliveira R.F. 2015. Social dominance modulates eavesdropping in zebrafish. Royal Society Open Science 2(8): 150220. DOI: 10.1098/rsos.150220
Bagnato S., Pedruzzi L., Goracci J., Palagi E. 2023. The interconnection of hierarchy, affiliative behaviours, and social play shapes social dynamics in Maremmana beef cattle. Applied Animal Behaviour Science 260: 105868. DOI: 10.1016/j.applanim.2023.105868
Bastian M., Heymann S., Jacomy M. 2009. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media 3(1): 361–362. DOI: 10.1609/icwsm.v3i1.13937
Box H.O. 1984. Socially Mediated Learning. In: Primate Behaviour and Social Ecology. Dordrecht: Springer. P. 212–234. DOI: 10.1007/978-94-009-5538-7_7
Braga Goncalves I., Radford A.N. 2022. Intraspecific variation in audience effects during outgroup conflict in a cooperatively breeding fish. Animal Behaviour 190: 81–92. DOI: 10.1016/j.anbehav.2022.05.016
Bubak A.N., Gerken A.R., Watt M.J., Costabile J.D., Renner K.J., Swallow J.G. 2016. Assessment strategies and fighting patterns in animal contests: a role for serotonin?. Current Zoology 62(3): 257–263. DOI: 10.1093/cz/zow040
Cortés B., Fidalgo A., Díaz S., Abáigar T. 2024. Agonistic interactions and social behaviors in the Saharan Dorcas gazelle (Gazella dorcas neglecta): Using social network analysis to evaluate relationships and social structure in captive male groups. Zoo Biology 43(3): 224–235. DOI: 10.1002/zoo.21824
Deng K., Liu W., Wang D.H. 2019. Social network analysis and its application in animal behavior research. Acta Theriologica Sinica 39(3): 311–322. DOI: 10.16829/j.slxb.150275 [In Chinese]
Dey C.J., Quinn J.S. 2014. Individual attributes and self-organizational processes affect dominance network structure in pukeko. Behavioral Ecology 25(6): 1402–1408. DOI: 10.1093/beheco/aru138
Ellis L. 1995. Dominance and reproductive success among nonhuman animals: A cross-species comparison. Ethology and Sociobiology 16(4): 257–333. DOI: 10.1016/0162-3095(95)00050-U
Esattore B., Villagrán M., Pluháček J., Komárková M., Dušek A., Kotrba R., Bartošová J., Bartoš L. 2020. To beat or not to beat: Behavioral plasticity during the antler growth period affects cortisol but not testosterone concentrations in red deer (Cervus elaphus) males. General and Comparative Endocrinology 297: 113552. DOI: 10.1016/j.ygcen.2020.113552
Foris B., Zebunke M., Langbein J., Melzer N. 2019. Comprehensive analysis of affiliative and agonistic social networks in lactating dairy cattle groups. Applied Animal Behaviour Science 210: 60–67. DOI: 10.1016/j.applanim.2018.10.016
Gammell M.P., de Vries H., Jennings D.J., Carlin C.M., Hayden T.J. 2003. David's score: a more appropriate dominance ranking method than Clutton-Brock et al.'s index. Animal Behaviour 66(3): 601–605. DOI: 10.1006/anbe.2003.2226
Geng S.S., Ma S.L. 2000. Decline of musk deer in China and prospects for management. Environmental Conservation 27(4): 323–325. DOI: 10.1017/S0376892900000369
Grosenick L., Clement T.S., Fernald R.D. 2007. Fish can infer social rank by observation alone. Nature 445(7126): 429–432. DOI: 10.1038/nature05511
Harris R. 2016. Moschus chrysogaster. In: The IUCN Red List of Threatened Species 2016: e. T13895A61977139. Available from https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T13895A61977139.en
Heyes C.M. 1994. Social Learning in Animals: Categories and Mechanisms. Biological Reviews 69(2): 207–231. DOI: 10.1111/j.1469-185X.1994.tb01506.x
Hobson E.A., DeDeo S. 2015. Social Feedback and the Emergence of Rank in Animal Society. PLOS Computational Biology 11(9): e1004411. DOI: 10.1371/journal.pcbi.1004411
Hobson E.A., Mønster D., DeDeo S. 2021. Aggression heuristics underlie animal dominance hierarchies and provide evidence of group-level social information. Proceedings of the National Academy of Sciences of the United States of America 118(10): e2022912118. DOI: 10.1073/pnas.2022912118
Hoppitt W., Laland K.N. 2008. Social Processes Influencing Learning in Animals: A Review of the Evidence. In: Advances in the Study of Behavior. Vol. 38. New York: Academic Press. P. 105–165.
Jiang F., Zhang J., Gao H., Cai Z., Zhou X., Li S., Zhang T. 2020. Musk deer (Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China. Science of the Total Environment 704: 135335. DOI: 10.1016/j.scitotenv.2019.135335
Kaufmann J.H. 1983. On the Definitions and Functions of Dominance and Territoriality. Biological Reviews 58(1): 1–20. DOI: 10.1111/j.1469-185X.1983.tb00379.x
Leeds A., Kakule D., Stalter L., Mbeke J.K., Fawcett K. 2024. Group structure and individual relationships of sanctuary-living Grauer's gorillas (Gorilla beringei graueri). PLoS ONE 19(1): e0295561. DOI: 10.1371/journal.pone.0295561
Leimar O., Bshary R. 2022. Reproductive skew, fighting costs and winner–loser effects in social dominance evolution. Journal of Animal Ecology 91(5): 1036–1046. DOI: 10.1111/1365-2656.13691
Lv Q., Zhou X., Lu X., Shen L., Qin Y., Yuan N., Weladji R.B., Meng X. 2023. Influence of stocking density on the stereotypic behavior, fecal cortisol and musk secretion of captive male Alpine musk deer (Moschus chrysogaster). Biologia 78(11): 3135–3142. DOI: 10.1007/s11756-023-01428-0
Meng X., Feng J., Yun M., Wang B., Cody N. 2011. Relationships between musk extraction, social rank and tail-rubbing in male Alpine musk deer, Moschus sifanicus. Biologia 66(5): 928–932. DOI: 10.2478/s11756-011-0093-3
Meng X., Cody N., Gong B., Xiang L. 2012a. Stable fighting strategies to maintain social ranks in captive male Alpine musk deer (Moschus sifanicus). Animal Science Journal 83(8): 617–622. DOI: 10.1111/j.1740-0929.2011.0100
Meng X., Sih A., Li H., Cody N. 2012b. Quantified Analyses of Aggression Pattern in a Captive Population of Musk Deer (Moschus sifanicus). Annals of Animal Science 12(3): 413–421. DOI: 10.2478/v10220-012-0035-1
Mesterton-Gibbons M., Heap S.M. 2014. Variation between Self- and Mutual Assessment in Animal Contests. American Naturalist 183(2): 199–213. DOI: 10.1086/674443
Pacheco X.P. 2020. How consistently do personality attributes relate to an individual's position within a social network: a comparison across groups of captive meerkats. Behavioral Ecology and Sociobiology 74(8): 101. DOI: 10.1007/s00265-020-02880-7
Parker G.A. 1974. Assessment strategy and the evolution of fighting behaviour. Journal of Theoretical Biology 47(1): 223–243. DOI: 10.1016/0022-5193(74)90111-8
Ramos A., Robin J.P., Manizan L., Audroin C., Rodriguez E., Kemp Y.J.M., Sueur C. 2022. Glucocorticoids of European Bison in Relation to Their Status: Age, Dominance, Social Centrality and Leadership. Animals 12(7): 849. DOI: 10.3390/ani12070849
Rat M., van Dijk R.E., Covas R., Doutrelant C. 2015. Dominance hierarchies and associated signalling in a cooperative passerine. Behavioral Ecology and Sociobiology 69(3): 437–448. DOI: 10.1007/s00265-014-1856-y
Rieucau G., Giraldeau L.A. 2011. Exploring the costs and benefits of social information use: an appraisal of current experimental evidence. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1567): 949–957. DOI: 10.1098/rstb.2010.0325
Rowell T.E. 1966. Hierarchy in the organization of a captive baboon group. Animal Behaviour 14(4): 430–443. DOI: 10.1016/S0003-3472(66)80042-8
Rowell T.E. 1974. The concept of social dominance. Behavioral Biology 11(2): 131–154. DOI: 10.1016/S0091-6773(74)90289-2
Senar J.C., Camerino M., Metcalfe N.B. 1990. Familiarity Breeds Tolerance: the Development of Social Stability in Flocking Siskins (Carduelis spinus). Ethology 85(1): 13–24. DOI: 10.1111/j.1439-0310.1990.tb00381.x
Seyfarth R.M., Cheney D.L. 2015. Social cognition. Animal Behaviour 103(5): 191–202. DOI: 10.1016/j.anbehav.2015.01.030
Shizuka D., McDonald D.B. 2012. A social network perspective on measurements of dominance hierarchies. Animal Behaviour 83(4): 925–934. DOI: 10.1016/j.anbehav.2012.01.011
Silk M.J., Cant M.A., Cafazzo S., Natoli E., McDonald R.A. 2019. Elevated aggression is associated with uncertainty in a network of dog dominance interactions. Proceedings of the Royal Society B: Biological Sciences 286(1906): 20190536. DOI: 10.1098/rspb.2019.0536
Sosa S., Sueur C., Puga-Gonzalez I. 2021. Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods in Ecology and Evolution 12(1): 10–21. DOI: 10.1111/2041-210X.13366
Tibbetts E.A., Pardo-Sanchez J., Weise C. 2022. The establishment and maintenance of dominance hierarchies. Philosophical Transactions of the Royal Society B: Biological Sciences 377(1845): 20200450. DOI: 10.1098/rstb.2020.0450
Weidling G., Krieter J., Lübben R., Czycholl I. 2024. Dominance hierarchy does not influence distances travelled and area utilization in a large group of ponies. Applied Animal Behaviour Science 271(2): 106178. DOI: 10.1016/j.applanim.2024.106178
Yang T., Bayless D.W., Wei Y., Landayan D., Marcelo I.M., Wang Y., DeNardo L.A., Luo L., Druckmann S., Shah N.M. 2023. Hypothalamic neurons that mirror aggression. Cell 186(6): 1195–1211. DOI: 10.1016/j.cell.2023.01.022
Yu X.Y., Lv J.Q., Li B.G. 2005. Overview of the Post-conflict Behavior in Non-human Primates. Aata Anthropologica Sinica 39(3): 311–322. DOI: 10.16359/j.cnki.cn11-1963/q.2005.03.010 [In Chinese]