Article

Article name MAMMAL INVENTORY USING CAMERA TRAPS IN THE CENTRAL FOREST STATE NATURE RESERVE (WEST OF EUROPEAN RUSSIA)
Authors

Sergey S. Ogurtsov, PhD, Leading Researcher of the Central Forest State Nature Biosphere Reserve (172521, Russia, Tver Region, Nelidovo district, Zapovednyi settlement); Junior Researcher of the A.N. Severtsov Institute of Ecology and Evolution of the RAS (119071, Russia, Moscow, Leninsky Prospekt, 33); iD ORCID: https://orcid.org/0000-0002-0859-8954; e-mail: etundra@mail.ru
Anatoliy S. Zheltukhin, PhD, Leading Researcher of the Central Forest State Nature Biosphere Reserve (172521, Russia, Tver Region, Nelidovo district, Zapovednyi settlement); iD ORCID: https://orcid.org/0000-0001-7408-5666; e-mail: azheltukhin@mail.ru

Reference to article

Ogurtsov S.S., Zheltukhin A.S. 2024. Mammal inventory using camera traps in the Central Forest State Nature Reserve (West of European Russia). Nature Conservation Research 9(3): 12–33. https://dx.doi.org/10.24189/ncr.2024.017

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2024.017
Abstract

A mammal species inventory by estimating their richness is the first and necessary task of any mammal monitoring programme. This paper presents estimates of species richness of mammals (mostly medium and large body-sized) in the Central Forest State Nature Reserve (European Russia). Based on data collected in 2023 from 55 camera trap locations (19 676 camera days), 59 035 images of wild mammals were obtained. A total of 18 species were recorded. Of these, ten species were representatives of the Carnivora, four – Artiodactyla, two – Rodentia, one – Erinaceomorpha, and one – Lagomorpha. This amounted to 84% of all potentially camera-trapped mammals observed in the Central Forest State Nature Reserve. The relative abundance index (RAI) and naïve occupancy (ψnaive) were calculated for all species. The most common and frequently recorded were Meles meles (RAI = 4.95; ψnaive = 0.96), followed by Ursus arctos (RAI = 4.39; ψnaive = 1) and Lepus timidus (RAI = 4.08; ψnaive = 1), while the most rarely recorded species were Castor fiber (RAI = 0.01; ψnaive = 0.02), Erinaceus europaeus (RAI = 0.02; ψnaive = 0.04), and Lutra lutra (RAI = 0.03; ψnaive = 0.07). Large and medium-sized carnivorous and omnivorous mammal communities were the fastest and most completely captured. According to the constructed single-season multispecies occupancy model with Markov chains Monte Carlo, camera traps failed to record 4–5 more possible species. These species are likely to be Mustela lutreola, M. erminea, and Mustela nivalis, as well as two invasive species, Cervus nippon and Capreolus pygargus. All the captured species were recorded in total in a short period of time, namely from the end of March to the beginning of May during 1869 camera-days. Two of them (Castor fiber and Erinaceus europaeus) were recorded exclusively at this time, and they were not captured further until the end of the year. This emphasises the importance of conducting mammal inventory, with inclusion of the spring season.

Keywords

CAMMON, camera trap monitoring, large carnivores, mammal community, mesocarnivores, small carnivores, species richness, ungulates

Artice information

Received: 24.04.2024. Revised: 04.06.2024. Accepted: 19.06.2024.

The full text of the article
References

Ahumada J.A., Silva C.E.F., Gajapersad K., Hallam C., Hurtado J., Martin E., McWilliam A., Mugerwa B., O'Brien T., Rovero F., Sheil D., Spironello W.R., Winarni N., Andelman S.J. 2011. Community structure and diversity of tropical forest mammals: Data from a global camera trap network. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1578): 2703–2711. DOI: 10.1098/rstb.2011.0115
Alpeev M.A., Artaev O.N., Vargot E.V., Grishutkin O.G., Zahvatov A.A. 2018. First experience of using camera traps in the Mordovia State Nature Reserve. Proceedings of the Mordovia State Nature Reserve 20: 3–14. [In Russian]
Ario A., Damanik S., Rabbani A., Naibaho B., Hasibuan A., Hasibuan S., Hasibuan M.A., Harianja A. 2020. Assessing the species diversity in non-conservation areas: A first systematically camera trapping survey in Batang Angkola Landscape, North Sumatra, Indonesia. Indonesian Journal of Applied Environmental Studies 1(2): 14–24. DOI: 10.33751/injast.v1i2.2385
Assis W.O., Santos F.M., Nascimento L.F., Barreto W.T.G., Nantes W.A.G., Fonseca C., Herrera H.M., Porfirio G.E.O. 2022. Medium- and Large-Sized Mammals at the Urucum Massif in the Brazilian Pantanal: Camera Trap as an Effective Sampling Method to Estimate Species Richness, Relative Abundance, and Activity Patterns. Oecologia Australis 26(1): 19–33. DOI: 10.4257/oeco.2022.2601.03
Augugliaro C., Paniccia C., Janchivlamdan C., Monti I.E., Boldbaatar T., Munkhtsog B. 2019. Mammal inventory in the Mongolian Gobi, with the southeasternmost documented record of the Snow Leopard, Panthera uncia (Schreber, 1775), in the country. Check List 15(4): 565–578. DOI: 10.15560/15.4.565
Bowler M.T., Tobler M.W., Endress B.A., Gilmore M.P., Anderson M.J. 2017. Estimating mammalian species richness and occupancy in tropical forest canopies with arboreal camera traps. Remote Sensing in Ecology and Conservation 3(3): 146–157. DOI: 10.1002/rse2.35
Brooks S.P., Gelman A. 1998. General Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics 7(4): 434–455. DOI: 10.1080/10618600.1998.10474787
Akbaba B., Ayaş Z. 2012. Camera trap study on inventory and daily activity patterns of large mammals in a mixed forest in north-western Turkey. Mammalia 76(1): 43–48. DOI: 10.1515/mamm.2011.102
Burton A.C., Neilson E., Moreira D., Ladle A., Steenweg R., Fisher J.T., Bayne E., Boutin S. 2015. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52(3): 675–685. DOI: 10.1111/1365-2664.12432
Chamberlain S., Szoecs E., Foster Z., Arendsee Z., Boettiger C., Ram K., Bartomeus I., Baumgartner J., O'Donnell J., Oksanen J., Tzovaras B.G., Marchand P., Tran V., Salmon M., Li G., Grenié M. 2020. Taxize: Taxonomic information from around the web. R package version 0.9.98. Available from https://github.com/ropensci/taxize
Chao A., Chiu C. 2016. Species Richness: Estimation and Comparison. In: Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd. P. 1–26. DOI: 10.1002/9780470015902.a0026329
Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H., Colwell R.K., Ellison A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84(1): 45–67. DOI: 10.1890/13-0133.1
Chen C., Brodie J.F., Kays R., Davies T.J., Liu R., Fisher J.T., Ahumada J., McShea W., Sheil D., Agwanda B., Andrianarisoa M.H., Appleton R.D., Bitariho R., Espinosa S., Grigione M.M., Helgen K.M., Hubbard A., Hurtado C.M., Jansen P.A., Jiang X., Jones A., Kalies E.L., Kiebou-Opepa C., Li X., Lima M.G.M., Meyer E., Miller A.B., Murphy T., Piana R., Quan R.C. et al. 2022. Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conservation Letters 15(2): e12865. DOI: 10.1111/conl.12865
Chiarello A.G. 2000. Density and population size of mammals in remnants of Brazilian Atlantic Forest. Conservation Biology 14(6): 1649–1657. DOI: 10.1111/j.1523-1739.2000.99071.x
Colwell R.K., Coddington J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences 345(1311): 101–148. DOI: 10.1098/rstb.1994.0091
Costa Estrela D., Souza D.C., Souza J.M., Silva Castro A.L. 2015. Medium and large-sized mammals in a Cerrado area of the state of Goiás, Brazil. Check List 11(4): 1–6. DOI: 10.15560/11.4.1690
Debata S., Swain K.K. 2018. Estimating mammalian diversity and relative abundance using camera traps in a tropical deciduous forest of Kuldiha Wildlife Sanctuary, eastern India. Mammal Study 43(1): 45–53. DOI: 10.3106/ms2017-0078
Dorazio R.M., Royle J.A., Söderström B., Glimskär A. 2006. Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87(4): 842–854. DOI: 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2
Emelyanova A.A., Khristenko E.A., Vinogradova E.A., Volkova A.S. 2022. The first reliable find of the Leisler's bat (Nyctalus leisleri) in the Tver region: morphology, echolocation characteristics, ectoparasites. Plecotus et al. 25: 29–43. [In Russian]
Epova L.A., Babina S.G. 2015. Experience of using camera-traps for the study of large mammals in Kuznetsky Alatau Strict Nature Reserve. Proceedings of the Tigireksky State Nature Reserve 7: 270–275. DOI: 10.53005/20767390_2015_7_270 [In Russian]
Erena M.G. 2022. Assessment of medium and large-sized mammals and their behavioral response toward anthropogenic activities in Jorgo-Wato Protected Forest, Western Ethiopia. Ecology and Evolution 12(2): e8529. DOI: 10.1002/ece3.8529
Esipov A.V., Golovtsov D.E., Bykova E.A. 2015. The fauna of mammals and birds of the western chatkal ridge by camera trapping. Bulletin of Tyumen State University. Ecology and Nature Management 1(1): 141–150. [In Russian]
Ferreras P., Díaz-Ruiz F., Alves P.C., Monterroso P. 2017. Optimizing camera-trapping protocols for characterizing mesocarnivore communities in south-western Europe. Journal of Zoology 301(1): 23–31. DOI: 10.1111/jzo.12386
Gotelli N.J., Colwell R.K. 2011. Estimating species richness. In: A.E. Magurran, B.J. McGill (Eds.): Biological Diversity: Frontiers In Measurement And Assessment. Oxford: Oxford University Press. P. 39–54.
Greenberg S., Godin T., Whittington J. 2019. Design patterns for wildlife-related camera trap image analysis. Ecology and Evolution 9(24): 13706–13730. DOI: 10.1002/ece3.5767
Hamel S., Killengreen S.T., Henden J.A., Eide N.E., Roed-Erikson L., Ims R.A., Yoccoz N.G. 2013. Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods in Ecology and Evolution 4(2): 105–113. DOI: 10.1111/J.2041-210X.2012.00262.X
Haysom J.K., Deere N.J., Wearn O.R., Mahyudin A., Jami J.B., Reynolds G., Struebig M.J. 2021. Life in the Canopy: Using Camera-Traps to Inventory Arboreal Rainforest Mammals in Borneo. Frontiers in Forests and Global Change 4: 673071. DOI: 10.3389/ffgc.2021.67307
Hofmeester T.R., Thorsen N.H., Cromsigt J.P.G.M., Kindberg J., Andrén H., Linnell J.D.C., Odden J. 2021. Effects of camera-trap placement and number on detection of members of a mammalian assemblage. Ecosphere 12(7): e03662. DOI: 10.1002/ecs2.3662
Hsieh T.C., Ma K.H., Chao A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7(12): 1451–1456. DOI: 10.1111/2041-210X.12613
Hsieh T.C., Ma K.H., Chao A. 2020. iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.20. Available from https://cran.r-project.org/web/packages/iNEXT/index.html
Istomin A.V. 1995. Mammals. In: Vertebrate animals of the Central Forest State Nature Reserve. Moscow: Nelidovo Press. P. 33–42. (Flora and fauna of state nature reserves. Vol. 59). [In Russian]
Jansen P.A., Ahumada J., Fegraus E., O'Brien T.G. 2014. TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. In: P.D. Meek, P.J.S. Fleming (Eds.): Camera trapping: wildlife management and research. Melbourne, Australia: CSIRO Publishing. P. 263–270.
Karnaukhov A.S., Poyarkov A.D., Aleksandrov D.Yu., Vanisova E.A., Hernandez-Blanco J.A., Chistopolova M.D., Rozhnov V.V. 2011. Use of camera traps in studying the species composition of mammals of Southwestern Tuva. In: Remote research methods in zoology. Moscow: KMK Scientific Press Ltd. P. 31. [In Russian]
Kelly M.J., Holub E.L. 2008. Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeastern Naturalist 15(2): 249–262. DOI: 10.1656/1092-6194(2008)15[249:CTOCTS]2.0.CO;2
Kéry M. 2011. Species Richness and Community Dynamics: A Conceptual Framework. In: A.F. O'Connell, J.D. Nichols, K.U. Karanth (Eds.): Camera Traps in Animal Ecology. Methods and Analyses. New York: Springer. P. 207–231. DOI: 10.1007/978-4-431-99495-4_12
Kiseleva N.V. 2020. The use of camera traps to monitoring of the Mustelidae predators. Herald of Game Management 17(1): 55–59. [In Russian]
Konchits A.M. 1935. Qualitative and quantitative state of game and fish fauna of the Central Forest State Nature Reserve. Proceedings of the Central Forest State Nature Reserve 1: 127–129. [In Russian]
Lamelas-Lopez L., Pardavila X., Amorim I.R., Borges P.A.V. 2020. Wildlife inventory from camera-trapping surveys in the Azores (Pico and Terceira islands). Biodiversity Data Journal 8: e47865. DOI: 10.3897/BDJ.8.e47865
Leempoel K., Hebert T., Hadly E.A. 2020. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proceedings of the Royal Society B: Biological Sciences 287(1918): 20192353. DOI: 10.1098/rspb.2019.2353
Lissovsky A.A., Sheftel B.I., Stakheev V.V., Ermakov O.A., Smirnov D.G., Glazov D.M., Strelnikov D.P., Ekonomov A.V., Titov S.V., Obolenskaya E.V., Kozlov Y.A. Saveljev A.P. 2018. Creating an integrated information system for the analysis of mammalian fauna in the Russian Federation and the preliminary results of this information system. Russian Journal of Theriology 17(2): 85–90. DOI: 10.15298/rusjtheriol.17.2.04
Littlewood N.A., Hancock M.H., Newey S., Shackelford G., Toney R. 2021. Use of a novel camera trapping approach to measure small mammal responses to peatland restoration. European Journal of Wildlife Research 67(1): 12. DOI: 10.1007/s10344-020-01449-z
MacKenzie D.I., Nichols J.D., Royle J.A., Pollock K.H., Bailey L.A., Hines J.E. 2017. Occupancy Modeling and Estimation. Inferring Patterns and Dynamics of Species Occurrence. 2nd Edition. Burlington, USA: Elsevier/Academic Press. 648 p. DOI: 10.1016/C2012-0-01164-7
Meek P.D., Ballard G., Claridge A., Kays R., Moseby K., O'Brien T., O'Connell A., Sanderson J., Swann D.E., Tobler M., Townsend S. 2014. Recommended guiding principles for reporting on camera trapping research. Biodiversity Conservation 23(9): 2321–2343. DOI: 10.1007/s10531-014-0712-8
Mendenhall C.D., Karp D.S., Meyer C.F.J., Hadly E.A., Daily G.C. 2014. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509(7499): 213–217. DOI: 10.1038/nature13139
Mishin A.S. 2019. First registration of lynx (Lynx lynx) in the Voronezh State Nature Reserve. In: Mammals of Russia: faunistics and issues of theriogeography. Rostov-on-Don: KMK Scientific Press Ltd. P. 172–174. [In Russian]
Mishin A.S. 2020. New species of mammals for the Voronezh State Nature Reserve. Proceedings of the Voronezh State Nature Reserve 29: 277–281. [In Russian]
Mohd-Azlan J., Kaicheen S.S., Yoong W.C. 2018. Distribution, relative abundance and occupancy of selected mammals along paved road in Kubah National Park, Sarawak, Borneo. Nature Conservation Research 3(2): 36–46. DOI: 10.24189/ncr.2018.028
Mohd-Azlan J., Lok L., Maiwald M.J., Fazlin S., Shen T.D., Kaicheen S.S., Dagang P. 2020. The distribution of medium to large mammals in Samunsam Wildlife Sanctuary, Sarawak in relation to the newly constructed Pan-Borneo Highway. Nature Conservation Research 5(4): 43–54. DOI: 10.24189/ncr.2020.055
O'Brien T.G. 2010. Wildlife picture index and biodiversity monitoring: issues and future directions. Animal Conservation 13(4): 350–352. DOI: 10.1111/j.1469-1795.2010.00384.x
Oberosler V., Groff C., Iemma A., Pedrini P., Rovero F. 2017. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mammalian Biology 87: 50–61. DOI: 10.1016/j.mambio.2017.05.005
Ogurtsov S.S., Zheltukhin A.S. 2022. Camera traps monitoring program for large and medium-sized mammals on the example of the Central Forest State Nature Reserve. In: Mammals in a changing world: current problems of theriology. Moscow: KMK Scientific Press Ltd. P. 257. [In Russian]
Ogurtsov S.S., Efremov V.A., Leus A.V. 2024a. Application of artificial intelligence technologies in processing images from camera traps: principles, software, approaches. Principles of the Ecology 1: 4–37. DOI: 10.15393/j1.art.2024.14662 [In Russian]
Ogurtsov S.S., Efremov V.A., Leus A.V. 2024b. Review of the software for processing and analyzing camera trap data: neural networks and web services. Russian Journal of Ecosystem Ecology 9(1): 1–18. DOI: 10.21685/2500-0578-2024-1-2 [In Russian]
Oksanen J., Simpson G., Blanchet F., Kindt R., Legendre P., Minchin P., O'Hara R., Solymos P., Stevens M., Szoecs E., Wagner H., Barbour M., Bedward M., Bolker B., Borcard D., Carvalho G., Chirico M., De Caceres M., Durand S., Evangelista H., Fitz John R., Friendly M., Furneaux B., Hannigan G., Hill M., Lahti L., McGlinn D., Ouellette M., Ribeiro Cunha E., Smith T. et al. 2022. vegan: Community Ecology Package. R package version 2.6-4. Available from https://CRAN.R-project.org/package=vegan
Pardo L.E., Campbell M.J., Edwards W., Clements G.R., Laurance W.F. 2018. Terrestrial mammal responses to oil palm dominated landscapes in Colombia. PLoS ONE 13(5): e0197539. DOI: 10.1371/journal.pone.0197539
Pavlinov I.Y., Kruskop S.V., Varshavsky A.A., Borisenko A.V. 2002. Terrestrial mammals of Russia. Reference book-definition. Moscow: KMK Scientific Press Ltd. 298 p. [In Russian]
Plummer M. 2017. JAGS Version 4.3.0 user manual. 74 p. Available from https://people.stat.sc.edu/hansont/stat740/jags_user_manual.pdf
Plummer M. 2019. rjags: Bayesian Graphical Models using MCMC. R package version 4-10. Available from https://CRAN.R-project.org/package=rjags
Popova E.D., Zlatanova D.P., Todev V. 2017. Diversity and Temporal Relationships between Mammals at Feeding Stations in Western Rhodope Mountains, Bulgaria. Acta Zoologica Bulgarica 69(4): 529–540.
Porfirio G., Sarmento P., Filho N.L.X., Cruz J., Fonseca C. 2014. Medium to large size mammals of southern Serra do Amolar, Mato Grosso do Sul, Brazilian Pantanal. Check List 10(3): 473–482. DOI: 10.15560/10.3.473
Porfirio G., Foster V.C., Sarmento P., Fonseca C. 2018. Camera traps as a tool for Carnivore conservation in a mosaic of Protected Areas in the Pantanal wetlands, Brazil. Nature Conservation Research 3(2): 57–67. DOI: 10.24189/ncr.2018.035
Puzachenko Yu.G., Zheltukhin A.S., Kozlov D.N., Korablev N.P., Fedyaeva M.V., Puzachenko M.Yu., Siunova E.V. 2016. Central Forest State Nature Biosphere Reserve. Popular science essay. 2nd edition. Tver: Pechatnya. 80 p. [In Russian]
R Core Team. 2023. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.R-project.org
Raby M. 2015. Ark and Archive: making a place for long-term research on Barro Colorado Island, Panama. Isis 106(4): 798–824. DOI: 10.1086/684610
Robert C.P., Casella G. 2004. Monte Carlo Statistical Methods. New York: Springer. 649 p. DOI: 10.1007/978-1-4757-4145-2
Romero-Calderón A.G., Botello F., Sánchez-Hernández J., López-Villegas G., Vázquez-Camacho C., Sánchez-Cordero V. 2021. Species diversity of mammals and birds using camera-traps in a cloud forest in a Mexican hotspot. Southwestern Naturalist 65(1): 28–33. DOI: 10.1894/0038-4909-65.1.4
Rosa D.C.P., Brocardo C.R., Rosa C., Castro A.B., Norris D., Fadini R. 2021. Species-rich but defaunated: the case of medium and large-bodied mammals in a sustainable use protected area in the Amazon. Acta Amazonica 51(4): 323–333. DOI: 10.1590/1809-4392202101481
Rovero F., Jones T., Sanderson J. 2005. Notes on Abbott's duiker (Cephalophus spadix True 1890) and other forest antelopes of Mwanihana Forest, Udzungwa Mountains, Tanzania, as revealed by camera-trapping and direct observations. Tropical Zoology 18(1): 13–23. DOI: 10.1080/03946975.2005.10531211
Rovero F., Marshall A.R. 2009. Camera trapping photographic rate as an index of density in forest ungulates. Journal of Applied Ecology 46(5): 1011–1017. DOI: 10.1111/j.1365-2664.2009.01705.x
Rovero F., Martin E., Rosa M., Ahumada J.A., Spitale D. 2014. Estimating Species Richness and Modelling Habitat Preferences of Tropical Forest Mammals from Camera Trap Data. PLoS ONE 9(7): e103300. DOI: 10.1371/journal.pone.0103300
Rovero F., Spitale D. 2016. Presence/absence and species inventory. In: F. Rovero, F. Zimmermann (Eds.): Camera Trapping for Wildlife Research. Exeter: Pelagic Publishing Ltd. P. 79–112.
Rovero F., Tobler M., Sanderson J. 2010. Camera trapping for inventorying terrestrial vertebrates. In: J. Eymann, J. Degreef, C. Häuser, J. Monje, Y. Samyn, D. Vanden Spiegel (Eds.): Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories. Brussels: Belgian National Focal Point to the Global Taxonomy Initiative. P. 100–128.
Si X., Kays R., Ding P. 2014. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2(1): e374. DOI: 10.7717/peerj.374
Silveira L., Jácomo A.T.A., Diniz-Filho J.A.F. 2003. Camera trap, line transect census and track surveys: a comparative evaluation. Biological Conservation 114(3): 351–355. DOI: 10.1016/S0006-3207(03)00063-6
Smith A.F., Brock C., Conteddu K., Griffin L.L., Hynes C., Murphy K.J., Ciuti S. 2022. Camera trap surveys can reveal the dynamics of deer «hotspots» in Ireland. Mammal Communications 8: 6–14. DOI: 10.59922/DCOZ3312
Smith F.A., Lyons S.K., Ernest S.K.M., Jones K.E., Kaufman D.M., Dayan T., Marquet P.A., Brown J.H., Haskell J.P. 2003. Body mass of late quaternary mammals. Ecology 84(12): 3403. DOI: 10.1890/02-9003
Smith J., Legge S., James A., Tuft K. 2017. Optimising camera trap deployment design across multiple sites for species inventory surveys. Pacific Conservation Biology 23(1): 43–51. DOI: 10.1071/PC16017
Sokolova I.V. 2021. Changes in the composition of theeriofauna Astrakhan Reserve. Proceedings of the Mordovia State Nature Reserve 29: 411–414. [In Russian]
Sollmann R. 2018. A gentle introduction to camera-trap data analysis. African Journal of Ecology 56(4): 740–749. DOI: 10.1111/aje.12557
Sólymos P. 2010. Dclone: Data Cloning in R. The R Journal 2(2): 29–37. DOI: 10.32614/RJ-2010-011
Tanwar K.S., Sadhu A., Jhala Y.V. 2021. Camera trap placement for evaluating species richness, abundance, and activity. Scientific Reports 11(1): 23050. DOI: 10.1038/s41598-021-02459-w
Tenan S. 2016. Community-level occupancy analysis. In: F. Rovero, F. Zimmermann (Eds.): Camera Trapping for Wildlife Research. Exeter: Pelagic Publishing Ltd. P. 245–279.
Tobler M.W., Carrillo-Percastegui S.E., Leite Pitman R., Mares R., Powell G. 2008. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Animal Conservation 11(3): 169–178. DOI: 10.1111/j.1469-1795.2008.00169.x
van Lunteren P. 2023. EcoAssist: a no-code platform to train and deploy custom YOLOv5 object detection models. Journal of Open Source Software 8(88): 5581. DOI: 10.21105/joss.05581
Villegas J.P., Tampos G.G., Ibañez J.C. 2023. Inventory and abundance of non-volant mammals and birds in the unprotected regions of the Mount Apo Range, Philippines. Journal of Threatened Taxa 15(4): 22927–22939. DOI: 10.11609/jott.8213.15.4.22927-22939
Wearn O.R., Glover-Kapfer P. 2017. Camera-trapping for conservation: a guide to best-practices. WWF Conservation Technology Series 1(1). Working: WWF-UK. 181 p.
Wilson D.E., Reeder D.M. 2005. Mammal Species of the World. A Taxonomic and Geographic Reference (3rd ed.). Available from http://www.bucknell.edu/msw3
Yurgenson I.A., Yurgenson P.B. 1951. Ecological review of mammals of the Central Forest State Nature Reserve and its surroundings (results for 1931–1950). Manuscript. In: Archive of the Central Forest State Nature Biosphere Reserve. Zapovednyi settlement, Russia. 352 p. [In Russian]
Zheltukhin A.S. 2021. Extinct and endangered mammals in the fauna of the Central Forest Nature Reserve. Proceedings of the Mordovia State Nature Reserve 29: 239–242. [In Russian]
Zheltukhin A.S., Ogurtsov S.S. 2018. Camera traps in monitoring of forest mammals and birds. Tver: Polipress. 54 p. [In Russian]
Zlatanova D.P., Popova E.D. 2018. Biodiversity estimates from different camera trap surveys: a case study from Osogovo Mt., Bulgaria. Nature Conservation Research 3(2): 13–25. DOI: 10.24189/ncr.2018.026