Авторы |
Вальтер С. Араужо, PhD, профессор, кафедра общей биологии, Центр биологических и медицинских наук, Государственный университет Монтес-Кларос (Монтес-Кларос, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0003-0157-6151; e-mail: walterbioaraujo@gmail.com Луана Т. Сильвейра, магистр, аспирант, кафедра экологии, Институт биологических наук Федерального университета Гояса (Гояния, штат Гояс, Бразилия); iD ORCID: https://orcid.org/0000-0002-2428-7435; e-mail: luanateixeira.bio@gmail.com Луис А.Д. Фалькао, PhD, профессор, кафедра общей биологии, Центр биологических и медицинских наук, Государственный университет Монтес-Кларос (Монтес-Кларос, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0001-5268-684X; e-mail: luizdolabelafalcao@gmail.com Таллита М. Виейра, PhD, профессор, кафедра общей биологии, Центр биологических и медицинских наук, Государственный университет Монтес-Кларос (Монтес-Кларос, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0002-1483-6234; e-mail: thallyta.vieira@unimontes.br Уолдни П. Мартинс, PhD, профессор, кафедра общей биологии, Центр биологических и медицинских наук, Государственный университет Монтес-Кларос (Монтес-Кларос, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0003-2400-7517; e-mail: martinswp@gmail.com Юле Р.Ф. Нуньес, PhD, профессор, кафедра общей биологии, Центр биологических и медицинских наук, Государственный университет Монтес-Кларос (Монтес-Кларос, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0003-3328-7506; e-mail: yule.nunes@unimontes.br Хулио М. Грандес-Риос, магистр, аспирант; Национальный музей Рио-де-Жанейро, Федеральный университет Рио-де-Жанейро (Rio de Janeiro, Rio de Janeiro, Brazil); iD ORCID: https://orcid.org/0000-0001-9152-1167; e-mail: jmgr_19@hotmail.com |
Список цитируемой литературы |
Alvares C.A., Stape J.L., Sentelhas P.C., Gonçalves J.M., Sparovek G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22(6): 711–728. DOI: 10.1127/0941-2948/2013/0507 Araújo W.S. 2013. Different relationships between galling and non-galling herbivore richness and plant species richness: a meta-analysis. Arthropod-Plant Interactions 7(4): 373–377. DOI: 10.1007/s11829-013-9259-y Araújo W.S., Oliveira J.B.B.S. 2021. Plant–herbivore assemblages composed of endophagous and exophagous insects have different patterns of diversity and specialization in Brazilian savannas. Biotropica 53(4): 1013–1020. DOI: 10.1111/btp.12963 Araújo W.S., Santos B.B., Guilherme F.A.G., Scareli-Santos C. 2014. Galling insects in the Brazilian Cerrado: ecological patterns and perspectives. In: G.W. Fernandes, J.C. Santos (Eds.): Neotropical Insect Galls. Dordrecht: Springer Netherlands. P. 257–272. DOI: 0.1007/978-94-017-8783-3_15 Araújo W.S., Silva S.C.O., Alves A.B., Freitas É.V.D., Grandez‐Rios J.M. 2024. Specialized herbivores have differential distribution in veredas under different drying levels. Austral Ecology 49(2): e13473. DOI: 10.1111/aec.13473 Ávila M.A., Mota N.M., Souza S.R., Santos R.M., Nunes Y.R.F. 2021. Diversity and structure of natural regeneration in swamp forests in southeastern Brazil. Floresta e Ambiente 28(1): 1–7. DOI: 10.1590/2179-8087-FLORAM-2019-0110 Bates D., Mächler M., Bolker B., Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1–48. DOI: 10.18637/jss.v067.i01 Borges P.P., Oliveira K.A.F.A., Machado K.B., Vaz Ú.L., Cunha H.F., Nabout J.C. 2015. Trends and gaps of the scientific literature on the Cerrado biome: a scientometric analysis. Neotropical Biology and Conservation 10(1): 2–8. DOI: 10.4013/nbc.2015.101.01 Carrano-Moreira F.A. 2014. Insetos: Manual de Coleta e Identificação. Rio de Janeiro: Technical Books Publisher. 369 p. Cintra F.C.F., Araújo W.S., Maia V.C., Urso‐Guimarães M.V., Venâncio H., Andrade J.F., Carneiro M.A.A., de Almeida W.R., Santos J.C. 2020. Plant-galling insect interactions: a data set of host plants and their gall-inducing insects for the Cerrado. Ecology 101(11): e03149. DOI: 10.1002/ecy.3149 Colli G.R., Vieira C.R., Dianese J.C. 2020. Biodiversity and conservation of the Cerrado: recent advances and old challenges. Biodiversity and Conservation 29(5): 1465–1475. DOI: 10.1007/s10531-020-01967-x Del-Claro K., Torezan-Silingardi H.M. 2009. Insect-plant interactions: new pathways to a better comprehension of ecological communities in Neotropical savannas. Neotropical Entomology 38(2): 159–164. DOI: 10.1590/S1519-566X2009000200001 Diniz-Filho J.A.F., Barbosa A.C.O.F., Chaves L.J., Souza K.S., Dobrovolski R., Rattis L., Terribile L.C., Lima-Ribeiro M.S., Oliveira G., Brum F.T., Loyola R., Telles M.P.C. 2020. Overcoming the worst of both worlds: integrating climate change and habitat loss into spatial conservation planning of genetic diversity in the Brazilian Cerrado. Biodiversity and Conservation 29(5): 1555–1570. DOI: 10.1007/s10531-018-1667-y Fernandes G.W., Price P.W. 1988. Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76(2): 161–167. DOI: 10.1007/BF00379948 Godfray H.C.J., Lewis O.T., Memmott J. 1999. Studying insect diversity in the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences 354(1): 1811–1824. DOI: 10.1098/rstb.1999.0523 Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological statistics software package for education. Palaeontologia Electronica 4(1): 9. Herms D.A., Mattson W.J. 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology 67(3): 283–335. DOI: 10.1086/417659 Huberty A.F., Denno R.F. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85(5): 1383–1398. DOI: 10.1890/03-0352 Kansman J.T., Basu S., Casteel C.L., Crowder D.W., Lee B.W., Nihranz C.T., Finke D.L. 2022. Plant water stress reduces aphid performance: exploring mechanisms driven by water stress intensity. Frontiers in Ecology and Evolution 10(1): 1–11. DOI: 10.3389/fevo.2022.846908 Kar R.K. 2011. Plant responses to water stress: role of reactive oxygen species. Plant Signal Behavior 6(11): 1741–1745. DOI: 10.4161/psb.6.11.17729 Keosentse O., Mutamiswa R., Nyamukondiwa C. 2022. Interaction effects of desiccation and temperature stress resistance across Spodoptera frugiperda (Lepidoptera, Noctuidae) developmental stages. NeoBiota 73(1): 87–108. DOI: 10.3897/neobiota.73.76011 Kuchenbecker J., Macedo-Reis L.E., Fagundes M., Neves F.S. 2021. Spatiotemporal Distribution of herbivorous insects along always-green mountaintop forest islands. Frontiers in Forests and Global Change 4(1): 1–14. DOI: 10.3389/ffgc.2021.709403 Leal C.R.O., Fagundes M., Neves F.S. 2015. Change in herbivore insect communities from adjacent habitats in a transitional region. Arthropod-Plant Interactions 9(3): 311–320. DOI: 10.1007/s11829-015-9362-3 Neves F.S., Araújo L.S., Espírito-Santo M.M., Fagundes M., Fernandes G.W., Sanchez-Azofeifa G.A., Quesada M. 2010. Canopy herbivory and insect herbivore diversity in a dry Forest–Savanna transition in Brazil. Biotropica 42(1): 112–118. DOI: 10.1111/j.1744-7429.2009.00541.x Novotny V., Miller S.E. 2014. Mapping and understanding the diversity of insects in the tropics: past achievements and future directions. Austral Entomology 53(3): 259–267. DOI: 10.1111/aen.12111 Novotny V., Miller S.E., Baje L., Balagawi S., Basset Y., Cizek L., Craft K.J., Dem F., Drew R.A.I., Hulcr J., Leps J., Lewis O.T., Pokon R., Stewart A.J.A., Samuelson G.A., Weiblen G.D. 2010. Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology 79(6): 1193–1203. DOI: 10.1111/j.1365-2656.2010.01728.x Nunes Y.R.F., Souza C.S., Azevedo I.F.P., Oliveira O.S., Frazão L.A., Fonseca R.S., Santos R.M., Neves W.V. 2022. Vegetation structure and edaphic factors in veredas reflect different conservation status in these threatened areas. Forest Ecosystems 9: 100036. DOI: 10.1016/j.fecs.2022.100036 Oliveira J.B.B.S., Faria M.L., Borges M.A.Z., Fagundes M., Araújo W.S. 2020. Comparing the plant–herbivore network topology of different insect guilds in Neotropical savannas. Ecological Entomology 45(3): 406–415. DOI: 10.1111/een.12808 Osakabe Y., Osakabe K., Shinozaki K., Tran L.S.P. 2014. Response of plants to water stress. Frontiers in Plant Science 5(1): 1–8. DOI: 10.3389/fpls.2014.00086 R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available from https://www.R-project.org Ratter J.A., Ribeiro J.F., Bridgewater S. 1997. The Brazilian cerrado vegetation and threats to its biodiversity. Annals of Botany 80(3): 223–230. DOI: 10.1006/anbo.1997.0469 Ribeiro J.F., Walter B.M.T. 2008. As principais fitofisionomias do bioma Cerrado. In: S.M. Sano, S.P. Almeida, J.F. Ribeiro (Eds.): Cerrado: Ecologia e Flora. Planaltina: Embrapa Cerrados. P. 151–199. Ribeiro S.P., Fernandes G.W. 2000. Interações entre insetos e plantas no cerrado: teoria e hipóteses de trabalho. Oecologia Brasiliensis 8(2000): 299–320. DOI: 10.4257/oeco.2000.0801.11 Ricklefs R.E., Marquis R.J. 2012. Species richness and niche space for temperate and tropical folivores. Oecologia 168(1): 213–220. DOI: 10.1007/s00442-011-2079-9 Rossetti M.R., González E., Salvo A., Valladares G. 2014. Not all in the same boat: trends and mechanisms in herbivory responses to forest fragmentation differ among insect guilds. Arthropod-Plant Interactions 8(6): 593–603. DOI: 10.1007/s11829-014-9342-z Sestari I., Campos M.L. 2022. Into a dilemma of plants: the antagonism between chemical defenses and growth. Plant Molecular Biology 109(4–5): 469–482. DOI: 10.1007/s11103-021-01213-0 Silva J.O., Jesus F.M., Fagundes M., Fernandes G.W. 2009. Esclerofilia, taninos e insetos herbívoros associados a Copaifera lagsdorffii Desf. (Fabaceae: Caesalpinioideae) em área de transição Cerrado-Caatinga no Brasil. Ecología Austral 19: 197–206. Silveira L.T., Araújo W.S. 2021. Plant-herbivore networks composed by adult and immature insects have distinct responses to habitat modification in Brazilian savannas. Journal of Insect Conservation 25(5–6): 747–758. DOI: 10.1007/s10841-021-00340-9 Slade E.M., Ong X.R. 2023. The Future of Tropical Insect Diversity: Strategies to Fill Data and Knowledge Gaps. Current Opinion in Insect Science 58: 101063. DOI: 10.1016/j.cois.2023.101063 Stork N.E. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annual Review of Entomology 63: 31–45. DOI: 10.1146/annurev-ento-020117-043348 Tews J., Brose U., Grimm V., Tielbörger K., Wichmann M.C., Schwager M., Jeltsch F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31(1): 79–92. DOI: 10.1046/j.0305-0270.2003.00994.x Yang A.S. 2001. Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evolution and Development 3(2): 59–72. DOI: 10.1046/j.1525-142x.2001.003002059.x Züst T., Agrawal A.A. 2017. Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annual Review of Plant Biology 68: 513–534. DOI: 10.1146/annurev-arplant-042916-040856 |