Article

Article name IMPACT OF VEREDA DRYNESS ON THE INSECT HERBIVORE DIVERSITY IN ADJACENT CERRADO AREAS IN BRAZILIAN PROTECTED AREAS
Authors

Walter S. de Araújo, PhD, Professor, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0003-0157-6151; e-mail: walterbioaraujo@gmail.com
Luana T. Silveira, MSc., PhD Student, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás (Goiânia, Goiás, Brazil); iD ORCID: https://orcid.org/0000-0002-2428-7435; e-mail: luanateixeira.bio@gmail.com
Luiz A. D. Falcão, PhD, Professor, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0001-5268-684X; e-mail: luizdolabelafalcao@gmail.com
Thallyta M. Vieira, PhD, Professor, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0002-1483-6234; e-mail: thallyta.vieira@unimontes.br
Waldney P. Martins, PhD, Professor, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0003-2400-7517; e-mail: martinswp@gmail.com
Yule R. F. Nunes, PhD, Professor, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0003-3328-7506; e-mail: yule.nunes@unimontes.br
Julio M. Grandez-Rios, MSc., PhD Student, Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro (Rio de Janeiro, Rio de Janeiro, Brazil); iD ORCID: https://orcid.org/0000-0001-9152-1167; e-mail: jmgr_19@hotmail.com

Reference to article

Araújo W.S., Silveira L.T., Falcão L.A.D., Vieira T.M., Martins W.P., Nunes Y.R.F., Grandez-Rios J.M. 2024. Impact of vereda dryness on the insect herbivore diversity in adjacent cerrado areas in Brazilian Protected Areas. Nature Conservation Research 9(2): 90–99. https://dx.doi.org/10.24189/ncr.2024.016

Electronic Supplement 1. Additional data for the paper of Araújo et al. (2024) (Link).

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2024.016
Abstract

Unravelling the factors that influence plant-insect interactions remains a fundamental concern in terrestrial ecology. In the present study, we evaluated the impact of varying degrees of drying on cerrado areas adjacent to veredas on the species richness, abundance and composition of the insect herbivore fauna. Additionally, we examined differences in these impacts between various guilds (chewing and sucker insects) and developmental stages (adult and immature insects). The research has been performed in study areas located in three Protected Areas in Brazil. In total, we recorded 106 species of herbivorous insects across five orders (Coleoptera, Hemiptera, Hymenoptera, Lepidoptera, and Orthoptera). Hemiptera and Coleoptera stood out as the orders with the highest species diversity and individual numbers. Among the families, Cicadellidae and Curculionidae exhibited the highest richness in species and abundance of individuals. We found that richness of herbivorous insects was higher in wet zones (20.2 ± 6.5) of the veredas compared to dry zones (12.3 ± 7.5), as well as the abundance of herbivorous insects was higher in wet zones (49.4 ± 25.5) than in the dry zones (15.8 ± 7.9). Whithin insect guilds, the abundance of chewing insects was higher in wet zones (34.0 ± 13.6) than in dry zones (16.3 ± 14.8), but this difference was not observed for the diversity of sucking insects. Regarding developmental stage, immature insects exhibited higher species richness in wet zones (10.4 ± 5.0) compared to dry zones (5.3 ± 2.1), while adult insect diversity did not show differences between the studied zones. Furthermore, the species composition of herbivorous insects, various trophic guilds (chewers and suckers) and developmental stages (adults and immature insect) did not significantly differ among the zones studied within the veredas. According to our findings, herbivorous insects exhibit a preference for wet environments, which provide better conditions and higher-quality food resources for development and reproduction.

Keywords

feeding guilds, habitat modification, herbivorous insects, palm swamps, savannas

Artice information

Received: 22.03.2024. Revised: 13.05.2024. Accepted: 14.05.2024.

The full text of the article
References

Alvares C.A., Stape J.L., Sentelhas P.C., Gonçalves J.M., Sparovek G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22(6): 711–728. DOI: 10.1127/0941-2948/2013/0507
Araújo W.S. 2013. Different relationships between galling and non-galling herbivore richness and plant species richness: a meta-analysis. Arthropod-Plant Interactions 7(4): 373–377. DOI: 10.1007/s11829-013-9259-y
Araújo W.S., Oliveira J.B.B.S. 2021. Plant–herbivore assemblages composed of endophagous and exophagous insects have different patterns of diversity and specialization in Brazilian savannas. Biotropica 53(4): 1013–1020. DOI: 10.1111/btp.12963
Araújo W.S., Santos B.B., Guilherme F.A.G., Scareli-Santos C. 2014. Galling insects in the Brazilian Cerrado: ecological patterns and perspectives. In: G.W. Fernandes, J.C. Santos (Eds.): Neotropical Insect Galls. Dordrecht: Springer Netherlands. P. 257–272. DOI: 0.1007/978-94-017-8783-3_15
Araújo W.S., Silva S.C.O., Alves A.B., Freitas É.V.D., Grandez‐Rios J.M. 2024. Specialized herbivores have differential distribution in veredas under different drying levels. Austral Ecology 49(2): e13473. DOI: 10.1111/aec.13473
Ávila M.A., Mota N.M., Souza S.R., Santos R.M., Nunes Y.R.F. 2021. Diversity and structure of natural regeneration in swamp forests in southeastern Brazil. Floresta e Ambiente 28(1): 1–7. DOI: 10.1590/2179-8087-FLORAM-2019-0110
Bates D., Mächler M., Bolker B., Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1–48. DOI: 10.18637/jss.v067.i01
Borges P.P., Oliveira K.A.F.A., Machado K.B., Vaz Ú.L., Cunha H.F., Nabout J.C. 2015. Trends and gaps of the scientific literature on the Cerrado biome: a scientometric analysis. Neotropical Biology and Conservation 10(1): 2–8. DOI: 10.4013/nbc.2015.101.01
Carrano-Moreira F.A. 2014. Insetos: Manual de Coleta e Identificação. Rio de Janeiro: Technical Books Publisher. 369 p.
Cintra F.C.F., Araújo W.S., Maia V.C., Urso‐Guimarães M.V., Venâncio H., Andrade J.F., Carneiro M.A.A., de Almeida W.R., Santos J.C. 2020. Plant-galling insect interactions: a data set of host plants and their gall-inducing insects for the Cerrado. Ecology 101(11): e03149. DOI: 10.1002/ecy.3149
Colli G.R., Vieira C.R., Dianese J.C. 2020. Biodiversity and conservation of the Cerrado: recent advances and old challenges. Biodiversity and Conservation 29(5): 1465–1475. DOI: 10.1007/s10531-020-01967-x
Del-Claro K., Torezan-Silingardi H.M. 2009. Insect-plant interactions: new pathways to a better comprehension of ecological communities in Neotropical savannas. Neotropical Entomology 38(2): 159–164. DOI: 10.1590/S1519-566X2009000200001
Diniz-Filho J.A.F., Barbosa A.C.O.F., Chaves L.J., Souza K.S., Dobrovolski R., Rattis L., Terribile L.C., Lima-Ribeiro M.S., Oliveira G., Brum F.T., Loyola R., Telles M.P.C. 2020. Overcoming the worst of both worlds: integrating climate change and habitat loss into spatial conservation planning of genetic diversity in the Brazilian Cerrado. Biodiversity and Conservation 29(5): 1555–1570. DOI: 10.1007/s10531-018-1667-y
Fernandes G.W., Price P.W. 1988. Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76(2): 161–167. DOI: 10.1007/BF00379948
Godfray H.C.J., Lewis O.T., Memmott J. 1999. Studying insect diversity in the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences 354(1): 1811–1824. DOI: 10.1098/rstb.1999.0523
Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological statistics software package for education. Palaeontologia Electronica 4(1): 9.
Herms D.A., Mattson W.J. 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology 67(3): 283–335. DOI: 10.1086/417659
Huberty A.F., Denno R.F. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85(5): 1383–1398. DOI: 10.1890/03-0352
Kansman J.T., Basu S., Casteel C.L., Crowder D.W., Lee B.W., Nihranz C.T., Finke D.L. 2022. Plant water stress reduces aphid performance: exploring mechanisms driven by water stress intensity. Frontiers in Ecology and Evolution 10(1): 1–11. DOI: 10.3389/fevo.2022.846908
Kar R.K. 2011. Plant responses to water stress: role of reactive oxygen species. Plant Signal Behavior 6(11): 1741–1745. DOI: 10.4161/psb.6.11.17729
Keosentse O., Mutamiswa R., Nyamukondiwa C. 2022. Interaction effects of desiccation and temperature stress resistance across Spodoptera frugiperda (Lepidoptera, Noctuidae) developmental stages. NeoBiota 73(1): 87–108. DOI: 10.3897/neobiota.73.76011
Kuchenbecker J., Macedo-Reis L.E., Fagundes M., Neves F.S. 2021. Spatiotemporal Distribution of herbivorous insects along always-green mountaintop forest islands. Frontiers in Forests and Global Change 4(1): 1–14. DOI: 10.3389/ffgc.2021.709403
Leal C.R.O., Fagundes M., Neves F.S. 2015. Change in herbivore insect communities from adjacent habitats in a transitional region. Arthropod-Plant Interactions 9(3): 311–320. DOI: 10.1007/s11829-015-9362-3
Neves F.S., Araújo L.S., Espírito-Santo M.M., Fagundes M., Fernandes G.W., Sanchez-Azofeifa G.A., Quesada M. 2010. Canopy herbivory and insect herbivore diversity in a dry Forest–Savanna transition in Brazil. Biotropica 42(1): 112–118. DOI: 10.1111/j.1744-7429.2009.00541.x
Novotny V., Miller S.E. 2014. Mapping and understanding the diversity of insects in the tropics: past achievements and future directions. Austral Entomology 53(3): 259–267. DOI: 10.1111/aen.12111
Novotny V., Miller S.E., Baje L., Balagawi S., Basset Y., Cizek L., Craft K.J., Dem F., Drew R.A.I., Hulcr J., Leps J., Lewis O.T., Pokon R., Stewart A.J.A., Samuelson G.A., Weiblen G.D. 2010. Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology 79(6): 1193–1203. DOI: 10.1111/j.1365-2656.2010.01728.x
Nunes Y.R.F., Souza C.S., Azevedo I.F.P., Oliveira O.S., Frazão L.A., Fonseca R.S., Santos R.M., Neves W.V. 2022. Vegetation structure and edaphic factors in veredas reflect different conservation status in these threatened areas. Forest Ecosystems 9: 100036. DOI: 10.1016/j.fecs.2022.100036
Oliveira J.B.B.S., Faria M.L., Borges M.A.Z., Fagundes M., Araújo W.S. 2020. Comparing the plant–herbivore network topology of different insect guilds in Neotropical savannas. Ecological Entomology 45(3): 406–415. DOI: 10.1111/een.12808
Osakabe Y., Osakabe K., Shinozaki K., Tran L.S.P. 2014. Response of plants to water stress. Frontiers in Plant Science 5(1): 1–8. DOI: 10.3389/fpls.2014.00086
R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available from https://www.R-project.org
Ratter J.A., Ribeiro J.F., Bridgewater S. 1997. The Brazilian cerrado vegetation and threats to its biodiversity. Annals of Botany 80(3): 223–230. DOI: 10.1006/anbo.1997.0469
Ribeiro J.F., Walter B.M.T. 2008. As principais fitofisionomias do bioma Cerrado. In: S.M. Sano, S.P. Almeida, J.F. Ribeiro (Eds.): Cerrado: Ecologia e Flora. Planaltina: Embrapa Cerrados. P. 151–199.
Ribeiro S.P., Fernandes G.W. 2000. Interações entre insetos e plantas no cerrado: teoria e hipóteses de trabalho. Oecologia Brasiliensis 8(2000): 299–320. DOI: 10.4257/oeco.2000.0801.11
Ricklefs R.E., Marquis R.J. 2012. Species richness and niche space for temperate and tropical folivores. Oecologia 168(1): 213–220. DOI: 10.1007/s00442-011-2079-9
Rossetti M.R., González E., Salvo A., Valladares G. 2014. Not all in the same boat: trends and mechanisms in herbivory responses to forest fragmentation differ among insect guilds. Arthropod-Plant Interactions 8(6): 593–603. DOI: 10.1007/s11829-014-9342-z
Sestari I., Campos M.L. 2022. Into a dilemma of plants: the antagonism between chemical defenses and growth. Plant Molecular Biology 109(4–5): 469–482. DOI: 10.1007/s11103-021-01213-0
Silva J.O., Jesus F.M., Fagundes M., Fernandes G.W. 2009. Esclerofilia, taninos e insetos herbívoros associados a Copaifera lagsdorffii Desf. (Fabaceae: Caesalpinioideae) em área de transição Cerrado-Caatinga no Brasil. Ecología Austral 19: 197–206.
Silveira L.T., Araújo W.S. 2021. Plant-herbivore networks composed by adult and immature insects have distinct responses to habitat modification in Brazilian savannas. Journal of Insect Conservation 25(5–6): 747–758. DOI: 10.1007/s10841-021-00340-9
Slade E.M., Ong X.R. 2023. The Future of Tropical Insect Diversity: Strategies to Fill Data and Knowledge Gaps. Current Opinion in Insect Science 58: 101063. DOI: 10.1016/j.cois.2023.101063
Stork N.E. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annual Review of Entomology 63: 31–45. DOI: 10.1146/annurev-ento-020117-043348
Tews J., Brose U., Grimm V., Tielbörger K., Wichmann M.C., Schwager M., Jeltsch F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31(1): 79–92. DOI: 10.1046/j.0305-0270.2003.00994.x
Yang A.S. 2001. Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evolution and Development 3(2): 59–72. DOI: 10.1046/j.1525-142x.2001.003002059.x
Züst T., Agrawal A.A. 2017. Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annual Review of Plant Biology 68: 513–534. DOI: 10.1146/annurev-arplant-042916-040856