Статья

Название статьи ИЗМЕНЕНИЕ СВОЙСТВ ПОЧВ КСЕРОФИТНЫХ ЛЕСОВ ЮГА РОССИИ ПОСЛЕ АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ
Авторы

Валерия Валерьевна Вилкова, м.н.с., Южный федеральный университет, Академия биологии и биотехнологии им. Д.И. Ивановского (3440906, Россия, Ростовская область, г. Ростов-на-Дону, пр. Стачки 194/1); iD ORCID: https://orcid.org/0000-0002-1374-3941; e-mail: lera.vilkova.00@mail.ru
Камиль Шагидуллович Казеев, д.г.н., директор Академии биологии и биотехнологии им. Д.И. Ивановского Южного федерального университета (3440906, Россия, Ростовская область, г. Ростов-на-Дону, пр. Стачки 194/1); iD ORCID: https://orcid.org/0000-0002-0252-6212, e-mail: kamil_kazeev@mail.ru
Михаил Сергеевич Нижельский, м.н.с., Южный федеральный университет, Академия биологии и биотехнологии им. Д.И. Ивановского (3440906, Россия, Ростовская область, г. Ростов-на-Дону, пр. Стачки 194/1); e-mail: nizhelskiy@sfedu.ru
Сергей Ильич Колесников, д.с-х.н., профессор, Южный федеральный университет, Академия биологии и биотехнологии им. Д.И. Ивановского (3440906, Россия, Ростовская область, г. Ростов-на-Дону, пр. Стачки 194/1); iD ORCID: https://orcid.org/0000-0001-5860-8420; e-mail: kolesnikov@sfedu.ru
Юлия Сергеевна Козунь, к.б.н., доцент, Южный федеральный университет, Академия биологии и биотехнологии им. Д.И. Ивановского (3440906, Россия, Ростовская область, г. Ростов-на-Дону, пр. Стачки 194/1); iD ORCID: https://orcid.org/0000-0003-4336-7745; e-mail: kuz.yuliya@mail.ru

Библиографическое описание статьи

Vilkova V.V., Kazeev K.Sh., Nizhelskiy M.S., Kolesnikov S.I., Kozun Yu.S. 2024. Changes in soil properties of xerophytic forests in Southern Russia after anthropogenic impact // Nature Conservation Research. Vol. 9(2). P. 61–72. https://dx.doi.org/10.24189/ncr.2024.013

Рубрика Оригинальные статьи
DOI https://dx.doi.org/10.24189/ncr.2024.013
Аннотация

Влияние антропогенного фактора вызывает существенные изменения свойств почв и древесной растительности ксерофитных лесов северной части Черноморского побережья. Представлены результаты исследования свойств почв на территории государственного природного заповедника «Утриш» (Россия), ранее подверженные влиянию антропогенных факторов. В качестве приоритетных видов антропогенного воздействия в долгосрочных исследованиях коричневых почв (Cambisols) государственного природного заповедника «Утриш» были выбраны пожары, вырубки и рекреационная нагрузка, которые быстро приводят к деградации экосистем и сокращению биоразнообразия. Пробы почвы отбирали из слоя 0–10 см в трех повторностях с каждого участка исследований. Площадь после рекреационной нагрузки изучалась в 2013, 2015, 2018, 2019, 2020 гг. Изучены следующие параметры: pH, содержание органического углерода, активности каталазы и инвертазы. Биологические свойства почв проявили большую чувствительность к изученным видам антропогенного воздействия. По всем изучаемым показателям наблюдалось снижение содержания органического углерода с 18% до 59% относительно контроля; наибольшее снижение показателя отмечено для почв после вырубки лесов. Ферменты класса оксидаз восстанавливаются быстрее, чем гидролазы. Активность каталазы для всех нарушенных почв снизилась в среднем на 13%. Незначительные отличия от контроля наблюдались для почв после вырубок и пожаров. Ингибирование активности инвертазы установлено в почвах в среднем на 52% после пожаров и рекреационного воздействия, при этом после вырубки лесов наблюдается повышение активности фермента на 77%. Результаты могут быть использованы для оценки последствий антропогенного воздействия на лесные экосистемы. Биологические индикаторы являются хорошими маркерами состояния нарушенных почв и могут быть использованы для определения последствий влияния антропогенного воздействия на почвы ксерофитных лесов.

Ключевые слова

Cambisol, антропогенное воздействие, биологическая активность почв, вырубка, пирогенное воздействие, рекреационное воздействие

Информация о статье

Поступила: 05.03.2024. Исправлена: 24.04.2024. Принята к опубликованию: 05.05.2024.

Полный текст статьи
Список цитируемой литературы

Adhikari K., Hartemink A.E. 2016. Linking soils to ecosystem services – A global review. Geoderma 262: 101–111. DOI: 10.1016/j.geoderma.2015.08.009
Alcañiz M., Outeiro L., Francos M., Úbeda X. 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment 613–614: 944–957. DOI: 10.1016/j.scitotenv.2017.09.144
Bocharnikov M.V., Petrushina M.N., Suslova E.G. 2019. Spatial organization of the vegetation and landscapes of the sub-Mediterranean forest and woodland belt on the Abrau Peninsula (Northwestern Caucasus). Arid Ecosystems 9(4): 237–247. DOI: 10.1134/S2079096119040024
Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintraub M.N., Zoppini A. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry 58: 216–234. DOI: 10.1016/j.soilbio.2012.11.009
Cambi M., Certini G., Neri F., Marchi E. 2015. The impact of heavy traffic on forest soils: A review. Forest Ecology and Management 338: 124–138. DOI: 10.1016/j.foreco.2014.11.022
Chungu D., Ng'andwe P., Mubanga H., Chileshe F. 2020. Fire alters the availability of soil nutrients and accelerates growth of Eucalyptus grandis in Zambia. Journal of Forestry Research 31(5): 1637–1645. DOI: 10.1007/s11676-019-00977-y
Dadwal A., Sharma S., Satyanarayana T. 2021. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. International Journal of Biological Macromolecules 188: 226–244. DOI: 10.1016/j.ijbiomac.2021.08.024
Dar S.A., Nabi M., Dar S.A., Ahmad W.S. 2022. Influence of anthropogenic activities on the diversity of forest ecosystems. In: M. Rani, B.S. Chaudhary, S. Jamal, P. Kumar (Eds.): Towards Sustainable Natural Resources: Monitoring and Managing Ecosystem Biodiversity. Cham: Springer International Publishing. P. 33–49. DOI: 10.1007/978-3-031-06443-2_3
den Ouden J., Mohren G.M.J. 2020. De ecologische aspecten van vlaktekap in het Nederlandse bos. Rapport voor het ministerie van LNV in het kader van de Bossenstrategie. Rapport Wageningen University. Wageningen: Wageningen University. 63 p. DOI: 10.18174/534859
Dick R.P., Kandeler E. 2005. Enzymes in soil. In: D. Hillel (Ed.): Encyclopedia of Soils in the Environment. Amsterdam: Elsevier. P. 448–456. DOI: 10.1016/B0-12-348530-4/00146-6
Dotaniya M.L., Aparna K., Dotaniya C.K., Singh M., Regar K.L. 2019. Role of soil enzymes in sustainable crop production. In: M. Kuddus (Ed.): Enzymes in food biotechnology: production, applications, and future prospects. Amsterdam: Elsevier. P. 569–589. DOI: 10.1016/B978-0-12-813280-7.00033-5
Dror I., Yaron B., Berkowitz B. 2021. The Human Impact on All Soil-Forming Factors during the Anthropocene. ACS Environmental Au 2(1): 11–19. DOI: 10.1021/acsenvironau.1c00010
Fernández-García V., Marcos E., Reyes O., Calvo L. 2020. Do fire regime attributes affect soil biochemical properties in the same way under different environmental conditions?. Forests 11(3): 274. DOI: 10.3390/f11030274
IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports. No. 106. Rome, Italy: FAO. 192 p.
Kalinitchenko V.P., Glinushkin A.P., Sharshak V.K., Ladan E.P., Minkina T.M., Sushkova S.N., Mandzhieva S.S., Batukaev A.A., Chernenko V.V., Ilyina L.P., Kosolapov V.M., Barbashev A.I., Antonenko E.M. 2021. Intra-Soil Milling for Stable Evolution and High Productivity of Kastanozem Soil. Processes 9(8): 1302. DOI: 10.3390/pr9081302
Kalinitchenko V.P., Glinushkin A.P., Minkina T.M., Mandzhieva S.S., Sushkova S.N., Sukovatov V.A., Il'ina L.P., Makarenkov D.A., Zavalin A.A., Dudnikova T.S., Barbashev A.I., Bren D.V., Rajput P., Batukaev A.A. 2022. Intra-soil waste recycling provides safety of environment. Environmental Geochemistry and Health 44(4): 1355–1376. DOI: 10.1007/s10653-021-01023-9
Kazeev K.Sh., Valkov V.F., Kolesnikov S.I. 2010. Atlas of soils of the South of Russia. Rostov-on-Don: Everest Publishing House. 128 p. [In Russian]
Kazeev K.Sh., Chernikova M.P., Kolesnikov S.I., Bykhalova O.N. 2015. The soil cover of the Utrish State Nature Reserve. Rostov-on-Don: Southern Federal University. 104 p. [In Russian]
Kazeev K.Sh., Kolesnikov S.I., Akimenko Yu.V., Dadenko E.V. 2016. Methods for biodiagnostics of terrestrial ecosystems. Rostov-on-Don: Southern Federal University. 356 p. [In Russian]
Kazeev K.Sh., Poltoratskaya T.A., Yakimova A.S., Odobashyan M.Yu., Shkhapatsev A.K., Kolesnikov S.I. 2019. Post-fire changes in the biological properties of the brown soils in the Utrish State Nature Reserve (Russia). Nature Conservation Research 4(Suppl.1): 93–104. DOI: 10.24189/ncr.2019.055
Kazeev K.Sh., Odabashian M.Yu., Trushkov A.V., Kolesnikov S.I. 2020. Assessment of the Influence of Pyrogenic Factors on the Biological Properties of Chernozems. Eurasian Soil Science 53(11): 1610–1619. DOI: 10.1134/S106422932011006X
Kazeev K., Vilkova V., Shkhapatsev A., Bykhalova O., Rudenok Y., Nizhelskiy М., Kolesnikov S., Minkina T., Sushkova S., Mandzhieva S., Rajput V.D. 2022. Consequences of the catastrophic wildfire in 2020 for the soil cover of the Utrish State Nature Reserve. Sains Tanah 19(1): 52–59. DOI: 10.20961/stjssa.v19i1.58709
Kuznetsova A.I., Lukina N.V., Tikhonova E.V., Gornov A.V., Gornova M.V., Smirnov V.E., Geraskina A.P., Shevchenko N.E., Tebenkova D.N., Chumachenko S.I. 2019. Carbon Stock in Sandy and Loamy Soils of Coniferous-Broadleaved Forests at Different Succession Stages. Eurasian Soil Science 52(7): 756–768. DOI: 10.1134/S1064229319070081
Lemos M.S.S., Curi N., Marques J.J.G.S.M., Sobrinho F.E. 1997. Evaluation of characteristics of cambisols derived from limestone in low tablelands in northeastern Brazil: Implications for management. Pesquisa Agropecuaria Brasileira 32(8): 825–834.
Leslie P., McCabe J.T. 2013. Response diversity and resilience in social-ecological systems. Current Anthropology 54(2): 114–143. DOI: 10.1086/669563
Liu Y., Goodrick S., Heilman W. 2014. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions. Forest Ecology and Management 317: 80–96. DOI: 10.1016/j.foreco.2013.02.020
Ma L., Liu L., Lu Y., Chen L., Zhang Z., Zhang H., Wang X., Shu L., Yang Q., Song Q., Peng Q., Yu Z., Zhang J. 2022. When microclimates meet soil microbes: Temperature controls soil microbial diversity along an elevational gradient in subtropical forests. Soil Biology and Biochemistry 166: 108566. DOI: 10.1016/j.soilbio.2022.108566
Masyagina O.V. 2021. Carbon dioxide emissions and vegetation recovery in fire-affected forest ecosystems of Siberia: recent local estimations. Current Opinion in Environmental Science and Health 23: 100283. DOI: 10.1016/j.coesh.2021.100283
Ngole-Jeme V.M. 2019. Fire-induced changes in soil and implications on soil sorption capacity and remediation methods. Applied Sciences 9(17): 3447. DOI: 10.3390/app9173447
Nichols L., Shinneman D.J., McIlroy S.K., de Graaff M.A. 2021. Fire frequency impacts soil properties and processes in sagebrush steppe ecosystems of the Columbia Basin. Applied Soil Ecology 165: 103967. DOI: 10.1016/j.apsoil.2021.103967
Ogureeva G.N., Bocharnikov M.V., Suslova E.G. 2020. Structure of the Botanical Diversity of the Utrish–Tuapse Variant of the Crimean-Novorossiysk Orobiom. Arid Ecosystems 10(4): 261–268. DOI: 10.1134/S2079096120040162
Rosenzweig C., Karoly D., Vicarelli M., Neofotis P., Wu Q., Casassa G., Menzel A., Root T.L., Estrella N., Seguin B., Tryjanowski P., Liu C., Rawlins S., Imeson A. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193): 353–357. DOI: 10.1038/nature06937
Serengil Y., Özhan S. 2006. Effects of recreational activities on the soil and water components of a deciduous forest ecosystem in Turkey. International Journal of Environmental Studies 63(3): 273–282. DOI: 10.1080/00207230600773315
Soldatov V.P., Shkhapatsev A.K., Kazeev K.Sh., Kharitonova T.D., Kazeev D.K., Kolesnikov S.I. 2020. Dynamics of enzyme activity change in soils of Adygea with various degrees of disturbance after forest reduction. Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Science 4: 105–111. DOI: 10.18522/1026-2237-2020-4-105-111 [In Russian]
Teng M., Huang C., Wang P., Zeng L., Zhou Z., Xiao W., Huang Z., Liu C. 2019. Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area, China. Science of the Total Environment 697: 134164. DOI: 10.1016/j.scitotenv.2019.134164
Thiele-Bruhn S., Schloter M., Wilke B.M., Beaudette L.A., Martin-Laurent F., Cheviron N., Mougin C., Römbke J. 2020. Identification of new microbial functional standards for soil quality assessment. Soil 6(1): 17–34. DOI: 10.5194/soil-6-17-2020
Tkachenko Yu.Yu., Denisov V.I. 2013. Climate. In: G.N. Ogureeva (Ed.): Utrish State Natural Reserve. Atlas. Proceedings. Vol. 2. Rostov-on-Don: Laki Pak Publishing House. P. 32–37. [In Russian]
Vilkova V.V., Kazeev K.Sh., Shkhapatsev A.K., Kolesnikov S.I. 2022. Reaction of the Enzymatic Activity of Soils of Xerophytic Forests on the Black Sea Coast in the Caucasus to the Pyrogenic Impact. Arid Ecosystems 12(1): 93–98. DOI: 10.1134/S2079096122010139
Vilkova V.V., Kazeev K.Sh., Nizhelskiy M.S., Privizentseva D.A., Fedorenko A.N., Kolesnikov S.I., Shkhapatsev A.K. 2024. Influence of fires on the enzymatic activity of сinnamonic soils and burozems in the Western Caucasus. Eurasian Soil Science 57(2): 266–274. DOI: 10.1134/S1064229323602834
Wallenstein M.D., Burns R.G. 2011. Ecology of extracellular enzyme activities and organic matter degradation in soil: A complex community-driven process. In: R.P. Dick (Ed.): Methods of Soil Enzymology. Vol. 9. Madison: SSSA Book Series. P. 35–55. DOI: 10.2136/sssabookser9.c2
Wuepper D., Borrelli P., Finger R. 2020. Countries and the global rate of soil erosion. Nature Sustainability 3(1): 51–55. DOI: 10.1038/s41893-019-0438-4
Zabinski C., Gannon J. 1997. Effects of recreational impacts on soil microbial communities. Environmental Management 21(2): 233–238. DOI: 10.1007/s002679900022
Zhang J., Peng C., Xue W., Yang B., Yang Z., Niu S., Zhu Q., Wang M. 2020. Dynamics of soil water extractable organic carbon and inorganic nitrogen and their environmental controls in mountain forest and meadow ecosystems in China. Catena 187: 104338. DOI: 10.1016/j.catena.2019.104338