Статья

Название статьи ЭТАЛОННЫЕ УЧАСТКИ ПРИБРЕЖНЫХ АТЛАНТИЧЕСКИХ ЛЕСОВ, НАХОДЯЩИЕСЯ ПОД УГРОЗОЙ ИСЧЕЗНОВЕНИЯ В ВЕРХНЕЙ ЧАСТИ ВОДОРАЗДЕЛА РИУ-ДОСИ
Авторы

Жоау К.Г. Фигейреду, магистрант, аспирант кафедры общей биологии, Центр биологических и медицинских наук, Программа последипломного образования в области биотехнологии, Государственный университет Монтес-Кларос (39401-089, Монтес-Кларос, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0001-6453-8684; e-mail: jcgfigueiredo16@gmail.com
Даниэль Негреирос, PhD, научный сотрудник лаборатории эволюционной экологии и биоразнообразия, кафедра генетики, экологии и эволюции, Федеральный университет Минас-Жерайса (31270-901, Белу-Оризонти, штат Минас-Жерайс, Бразилия); научный сотрудник Центра знаний о биоразнообразии (31270-901, Белу-Оризонти, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0002-4780-2284; e-mail: negreiros.eco@gmail.com
Летисия Рамос, PhD, научный сотрудник лаборатории эволюционной экологии и биоразнообразия, кафедра генетики, экологии и эволюции, Федеральный университет Минас-Жерайса (31270-901, Белу-Оризонти, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0002-7065-3213; e-mail: leticiaramos.bio@gmail.com
Дарио К. Паива, магистрант, аспирант кафедры биологических наук, Институт окружающей среды, Международный университет Флориды (33199, Майами, штат Флорида, США); iD ORCID: https://orcid.org/0000-0002-7697-7702; e-mail: dariocaminhapaiva@gmail.com
Юми Оки, PhD, научный сотрудник лаборатории эволюционной экологии и биоразнообразия, кафедра генетики, экологии и эволюции, Федеральный университет Минас-Жерайса (31270-901, Белу-Оризонти, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0003-1268-9151; e-mail: yumiokibiologia@gmail.com
Венита С. Жустино, магистрант, аспирант лаборатории эволюционной экологии и биоразнообразия, кафедра генетики, экологии и эволюции, Федеральный университет Минас-Жерайса (31270-901, Белу-Оризонти, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0009-0001-6527-493X; e-mail: wenitasouza@gmail.com
Рубенс М. Сантос, PhD, профессор Кафедры лесных наук, Федеральный университет Лавраса (CP 3037, 37200-000, Лаврас, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0002-4075-462X; e-mail: rubensmanoel@ufla.br
Рамиро Агилар, PhD, профессор Мультидисциплинарного института биологии растений, Национальный университет Кордовы (CC 495, (5000) Кордова, Аргентина); iD ORCID: https://orcid.org/0000-0003-4741-2611; e-mail: raguilar@imbiv.unc.edu.ar
Юле Р.Ф. Нуньес, PhD, Профессор в области экологии растений, кафедра общей биологии Государственного университета Монтес-Кларос (39401-089, Монтес-Кларос, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0003-3328-7506; e-mail: yule.nunes@unimontes.br
Ж. Вильсон Фернандес, PhD, Профессор лаборатории эволюционной экологии и биоразнообразия, кафедра генетики, экологии и эволюции, Федеральный университет Минас-Жерайса (31270-901, Белу-Оризонти, штат Минас-Жерайс, Бразилия); Координатор Центра знаний о биоразнообразии (31270-901, Белу-Оризонти, штат Минас-Жерайс, Бразилия); iD ORCID: https://orcid.org/0000-0003-1559-6049; e-mail: gw.fernandes@gmail.com

Библиографическое описание статьи

Figueiredo J.C.G., Negreiros D., Ramos L., Paiva D.C., Oki Y., Justino W.S., Santos R.M., Aguilar R., Nunes Y.R.F., Fernandes G.W. 2024. Reference sites of threatened riverine Atlantic forest in upper Rio Doce watershed // Nature Conservation Research. Vol. 9(1). P. 58–71. https://dx.doi.org/10.24189/ncr.2024.006

Electronic Supplement 1. Phytosociological parameters of species in the tree and sapling strata in riparian forests in the upper Rio Doce watershed, southeast Brazil (Ссылка).

Рубрика Оригинальные статьи
DOI https://dx.doi.org/10.24189/ncr.2024.006
Аннотация

Наиболее важной особенностью экологического восстановления является выявление эталонных экосистем, которые могут служить для сравнения биологической целостности, структуры и функций экосистем. Чтобы проекты по восстановлению и сохранению экосистем были эффективными в современном сценарии снижения биоразнообразия и экосистемных услуг во всем мире, крайне важно понимать взаимодействие почвы и растений в каждой среде обитания. В этом исследовании мы оценили структуру и состав флоры на 45 участках, равномерно распределенных на трех охраняемых территориях (эталонных экосистемах) Атлантического леса в верхней части водораздела Риу-Доси на юго-востоке Бразилии. Мы также проверили, влияют ли на различия в видовом составе эдафические факторы в ярусе деревьев и ярусе подроста. В обоих ярусах наибольшим числом видов были представлены семейства Fabaceae, Myrtaceae и Lauraceae. Также для семейства Fabaceae было отмечено наивысшее значение значимости в обоих ярусах. Почвы прибрежных лесов на исследованных участках отличались высокой неоднородностью. Анализ коинерции показал явный эдафически-флористический градиент как для яруса деревьев (RV = 0.467; p < 0.001), так и для яруса подроста (RV = 0.478; p < 0.001) со связью 46.7% и 47.8% между эдафической и флористической матрицами для деревьев и подроста соответственно. На каждом исследуемом участке мы определили группы видов деревьев и подроста, которые были тесно связаны с почвами либо более богатыми, либо более бедными питательными веществами. Понимание того, как особенности экологии и жизненного цикла растений связаны с эдафическими факторами, является важным шагом на пути получения научно обоснованных знаний для поддержки политики восстановления экосистем на участках водораздела Риу-Доси.

Ключевые слова

взаимоотношения таксон – окружающая среда, охраняемый лес, структура растительности, фитоценология, ярус деревьев, ярус подроста

Информация о статье

Поступила: 18.10.2023. Исправлена: 14.12.2023. Принята к опубликованию: 22.12.2023.

Полный текст статьи
Список цитируемой литературы

Almeida S.R., Watzlawick L.F., Myszka E., Valerio A.F. 2008. Florística e síndromes de dispersão de um remanescente de Floresta Ombrófila Mista em sistema faxinal. Ambiência 4(2): 289–297.
Alvares C.A., Stape J.L., Sentelhas P.C., Moraes Gonçalves J.D., Sparovek G. 2013. Köppen's climate classification map for Brazil. Meteorol Zeitschrift 22(6): 711–728. DOI: 10.1127/0941-2948/2013/0507
Alvarez Venegas V.H., Novais R.F., Barros N.F., Cantarutti R.B., Lopes A.S. 1999. Interpretação dos resultados das análises de solos. In: A.C. Ribeiro, P.T.G. Guimarães, V.H. Alvarez Venegas (Eds.): Recomendações para o uso de corretivos e fertilizantes em Minas Gerais. Viçosa, Brazil: CFSEMG. P. 25–32.
Amorim A.M., Jardim J.G., Lopes M.M.M., Fiaschi P., Borges R.A.X., Perdiz R.O., Thomas W.W. 2009. Angiospermas em remanescentes de floresta montana no sul da Bahia, Brasil. Biota Neotropica 9(3): 313–348. DOI: 10.1590/S1676-06032009000300028
APG IV. 2016. An update of Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181(1): 1–20. DOI: 10.1111/boj.12385
Armando D.M.S., Rosa T.C., Sousa H., Silva R.A., Silva Carvalho L.C., Gonzaga A.P.D., Machado E.L.M., Costa M.P. 2011. Colonização de espécies arbustivo-arbóreas em povoamento de Eucalyptus spp., Lavras, MG. Floresta Ambiente 18(4): 376–389. DOI: 10.4322/floram.2011.057
Balaguer L., Escudero A., Martín-Duque J.F., Mola I., Aronson J. 2014. The historical reference in restoration ecology: Re-defining a cornerstone concept. Biological Conservation 176: 12–20. DOI: 10.1016/j.biocon.2014.05.007
Balestrin D., Martins S.V., Schoorl J.M., Lopes A.T., de Andrade C.F. 2019. Phytosociological study to define restoration measures in a mined area in Minas Gerais, Brazil. Ecological Engineering 135: 8–16. DOI: 10.1016/j.ecoleng.2019.04.023
Bañares-de-Dios G., Macía M.J., de Carvalho G.M., Arellano G., Cayuela L. 2022. Soil and climate drive floristic composition in tropical forests: A literature review. Frontiers in Ecology and Evolution 10: 866905. DOI: 10.3389/fevo.2022.866905
Bauer J.T., Blumenthal N., Miller A.J., Ferguson J.K., Reynolds H.L. 2017. Effects of between-site variation in soil microbial communities and plant-soil feedbacks on the productivity and composition of plant communities. Journal of Applied Ecology 54(4): 1028–1039. DOI: 10.1111/1365-2664.12937
Beaudrot L., Rejmánek M., Marshall A.J. 2013. Dispersal modes affect tropical forest assembly across trophic levels. Ecography 36(9): 984–993. DOI: 10.1111/j.1600-0587.2013.00122.x
Binkley D., Vitousek P. 1989. Soil nutrient availability. In: R.W. Pearcy, J.R. Ehleringer, H.A. Mooney, P.W. Rundel (Eds.): Plant Physiological Ecology: Field Methods and Instrumentation. London, UK: Kluwer Academic Publishers. P. 75–96. DOI: 10.1007/978-94-009-2221-1_5
Bottino F., Milan J.A.M., Cunha-Santino M.B., Bianchini I. 2017. Influence of the residue from an iron mining dam in the growth of two macrophyte species. Chemosphere 186: 488–494. DOI: 10.1016/j.chemosphere.2017.08.030
Carvalho P.E.R. 1994. Espécies florestais brasileiras: Recomendações silviculturais, potencialidades e uso da madeira. Colombo: EMBRAPA-CNPF. 640 p.
Chadwick K.D., Asner G.P. 2018. Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecology Letters 21(7): 978–988. DOI: 10.1111/ele.12963
Chen H., Boutros P.C. 2011. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12: 35. DOI: 10.1186/1471-2105-12-35
Coelho M.S., Carlos P.P., Pinto V.D., Meireles A., Negreiros D., Morellato L.P.C., Fernandes G.W. 2018. Connection between tree functional traits and environmental parameters in an archipelago of montane forests surrounded by rupestrian grasslands. Flora 238: 51–59. DOI: 10.1016/j.flora.2017.04.003
De Deyn G.B., Cornelissen J.H.C., Bardgett R.D. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11(5): 516–531. DOI: 10.1111/j.1461-0248.2008.01164.x
Dias P.B., Gomes L.P., Callegaro R.M., Carvalho F.A., Dias H.M. 2021. Structural and environmental variability from the edge to the interior of an Atlantic Forest remnant in Brazil. Journal of Tropical Forest Science 33(3): 308–322. DOI: 10.26525/jtfs2021.33.3.308
Dick R.P., Thomas D.R., Halvorson J.J. 1996. Standardized methods, sampling, and sample pretreatment. In: J.W. Doran, A.J. Jones (Eds.): Methods for assessing soil quality. Vol. 49. Madison, USA: SSSA. P. 107–121. DOI: 10.2136/sssaspecpub49.c6
do Carmo F.F., Kamino L.H.Y., Tobias Junior R., de Campos I.C., do Carmo F.F., Silvino G., de Castro K.J.S.X., Mauro M.L., Rodrigues N.U.A., Miranda M.P.S., Pinto C.E.F. 2017. Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation 15(3): 145–151. DOI: 10.1016/j.pecon.2017.06.002
Dolédec S., Chessel D. 1994. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology 31(3): 277–294. DOI: 10.1111/j.1365-2427.1994.tb01741.x
Donagemma G.K., Viana J.H.M., Almeida B.G., Ruiz H.A., Klein V.A., Dechen S.C.F., Fernandes R.B.A. 2017. Análise granulométrica. In: P.C. Teixeira, G.K. Donagemma, A. Fontana, W.G. Teixeira (Eds.): Manual de métodos de análise de solo. 3 ed. Brasília: Embrapa Solos. P. 95–116.
Dray S., Dufour A.B. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22(4): 1–20. DOI: 10.18637/jss.v022.i04
Dray S., Chessel D., Thioulouse J. 2003. Co-inertia analysis and the linking of ecological data tables. Ecology 84(11): 3078–3089. DOI: 10.1890/03-0178
Durbecq A., Jaunatre R., Buisson E., Cluchier A., Bischoff A. 2020. Identifying reference communities in ecological restoration: the use of environmental conditions driving vegetation composition. Restoration Ecology 28(6): 1445–1453. DOI: 10.1111/rec.13232
Fagundes N.C.A., Ávila M.A., Souza S.R., Azevedo I.F.P., Nunes Y.R.F., Fernandes G.W., Fernandes L.A., dos Santos R.M., Veloso M.D.M. 2019. Riparian vegetation structure and soil variables in Pandeiros river, Brazil. Rodriguésia 70: e01822017. DOI: 10.1590/2175-7860201970002
Fernandes G.W., Goulart F.F., Ranieri B.D., Coelho M.S., Dales K., Boesche N., Bustamante M., Carvalho F.A., Carvalho D.C., Dirzo R., Fernandes S., Galetti P.M., Millan V.E.G., Milke C., Ramirez J.L., Neves A., Rogass C., Ribeiro S.P., Scariot A., Soares-Filho B. 2016a. Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza & Conservação 14(2): 35–45. DOI: 10.1016/j.ncon.2016.10.003
Fernandes G.W., Toma T.S.P., Angrisano P., Overbeck G. 2016b. Challenges in the restoration of quartzitic and ironstone rupestrian grasslands. In: G.W. Fernandes (Ed.): Ecology and conservation of mountaintop grasslands in Brazil. Switzerland: Springer. P. 449–477. DOI: 10.1007/978-3-319-29808-5_19
Figueiredo J.C.G., de Ávila M.A., Souza C.S., Neves J.G.S., Tolentino G.S., Oki Y., Azevedo I.F.P., Negreiros D., Viana J.H.M., dos Santos R.M., Fonseca R.S., Fernandes G.W., Nunes Y.R.F. 2022. Relationship of woody species composition with edaphic characteristics in threatened riparian Atlantic Forest remnants in the upper Rio Doce basin, Brazil. Nordic Journal of Botany 2022(11): e03679. DOI: 10.1111/njb.03679
Flora e Funga do Brasil. 2022. Jardim Botânico do Rio de Janeiro. Available from https://floradobrasil.jbrj.gov.br/
Forzza R.C., Baumgratz J.F.A., Bicudo C.E.M., Canhos D.A.L., Carvalho A.A., Coelho M.A.N., Costa A.F., Costa D.P., Hopkins M.G., Leitman P.M., Lohmann L.G., Lughadha E.N., Maia L.C., Martinelli G., Menezes M., Morim M.P., Peixoto A.L., Pirani J.R., Prado J., Queiroz L.P., Souza S., Souza C.V., Stehmann J.R., Sylvestre L.S., Walter B.M.T., Zappi D.C. 2012. New Brazilian floristic list highlights conservation challenges. BioScience 62(1): 39–45. DOI: 10.1525/bio.2012.62.1.8
Franco B.K.S., Martins S.V., Faria P.C.L., Ribeiro G.A., Neto A.M. 2014. Estrato de regeneração natural de um trecho de floresta estacional semidecidual, Viçosa, MG. Revista Árvore 38(1): 31–40. DOI: 10.1590/S0100-67622014000100003
Fujii K., Shibata M., Kitajima K., Ichie T., Kitayama K., Turner B.L. 2018. Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecological Research 33(1): 149–160. DOI: 10.1007/s11284-017-1511-y
Gandolfi S., Leitão-Filho H.F., Bezerra C.L.F. 1995. Levantamento florístico e caráter sucessional das espécies arbustivo-arbóreas de uma floresta mesófila semidecídua no município de Guarulhos, SP. Revista Brasileira de Biologia 55(4): 753–767.
Gann G.D., McDonald T., Walder B., Aronson J., Nelson C.R., Jonson J., Hallett J.G., Eisenberg C., Guariguata M.R., Liu J., Hua F., Echeverría C., Gonzales E., Shaw N., Decleer K., Dixon K. 2019. International principles and standards for the practice of ecological restoration. Second edition. Restoration Ecology 27(S1): S1–S46. DOI: 10.1111/rec.13035
Garnier E., Cortez J., Billès G., Navas M.L., Roumet C., Debussche M., Laurent G., Blanchard A., Aubry D., Bellmann A., Neill C., Toussaint J.P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9): 2630–2637. DOI: 10.1890/03-0799
Gei M., Rozendaal D.M.A., Poorter L., Bongers F., Sprent J.I., Garner M.D., Aide T.M., Andrade J.L., Balvanera P., Becknell J.M., Brancalion P.H.S., Cabral G.A.L., César R.G., Chazdon R.L., Cole R.J., Colletta G.D., de Jong B., Denslow J.S., Dent D.H., DeWalt S.J., Dupuy J.M., Durán S.M., do Espírito Santo M.M., Fernandes G.W., Nunes Y.R.F., Finegan B., Moser V.G., Hall J.S., Hernández-Stefanoni J.L., Junqueira A.B. et al. 2018. Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution 2(7): 1104–1111. DOI: 10.1038/s41559-018-0559-6
Goebel P.C., Wyse T.C., Corace R.G. 2005. Determining reference ecosystem conditions for disturbed landscapes within the context of contemporary resource management issues. Journal of Forestry 103(7): 351–356. DOI: 10.1093/jof/103.7.351
Higgs E., Falk D.A., Guerrini A., Hall M., Harris J., Hobbs R.J., Jackson S.T., Rhemtulla J.M., Throop W. 2014. The changing role of history in restoration ecology. Frontiers in Ecology and the Environment 12(9): 499–506. DOI: 10.1890/110267
Hobbs R.J., Harris J.A. 2001. Restoration ecology: repairing the earth's ecosystems in the new millennium. Restoration Ecology 9(2): 239–246. DOI: 10.1046/j.1526-100x.2001.009002239.x
John R., Dalling J.W., Harms K.E., Yavitt J.B., Stallard R.F., Mirabello M., Hubbell S.P., Valencia R., Navarrete H., Vallejo M., Foster R.B. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America 104(3): 864–869. DOI: 10.1073/pnas.0604666104
Kattge J., Díaz S., Lavorel S., Prentice I.C., Leadley P., Bönisch G., Garnier E., Westoby M., Reich P.B., Wright I.J., Cornelissen J.H.C., Violle C., Harrison S.P., Van Bodegom P.M., Reichstein M., Enquist B.J., Soudzilovskaia N.A., Ackerly D.D., Anand M., Atkin O., Bahn M., Baker T.R., Baldocchi D., Bekker R., Blanco C.C., Blonder B., Bond W.J., Bradstock R., Bunker D.E., Casanoves F. et al. 2011. TRY – a global database of plant traits. Global Change Biology 17(9): 2905–2935. DOI: 10.1111/j.1365-2486.2011.02451.x
Keenleyside K.A., Dudley N., Cairns S., Hall C.M., Stolton S. 2012. Ecological restoration for Protected Areas: Principles, guidelines and best practices. Gland, Switzerland: IUCN. 120 p.
Kindt R. 2020. WorldFlora: An R package for exact and fuzzy matching of plant names against the World Flora Online taxonomic backbone data. Applications in Plant Sciences 8(9): e11388. DOI: 10.1002/aps3.11388
Kollmann J., Meyer S.T., Bateman R., Conradi T., Gossner M.M., Mendonça M.S., Fernandes G.W., Hermann J.M., Koch C., Müller S.C., Oki Y., Overbeck G.E., Paterno G.B., Rosenfield M.F., Toma T.S.P., Weisser W.W. 2016. Integrating ecosystem functions into restoration ecology – recent advances and future directions. Restoration Ecology 24(6): 722–730. DOI: 10.1111/rec.12422
Kong F., Chen X., Zhang M., Liu Y., Jiang S., Chisholm R.A., He F. 2023. Pioneer tree species accumulate higher neighbourhood diversity than late-successional species in a subtropical forest. Forest Ecology and Management 531: 120740. DOI: 10.1016/j.foreco.2022.120740
Laughlin D.C. 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters 17(7): 771–784. DOI: 10.1111/ele.12288
Lewis S.L., Edwards D.P., Galbraith D. 2015. Increasing human dominance of tropical forests. Science 349(6250): 827–832. DOI: 10.1126/science.aaa9932
Lorenzi H. 1992. Árvores brasileiras. Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Vol. 1. Nova Odessa, Brazil: Plantarum. 384 p.
Lorenzi H. 1998. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Vol. 2. Nova Odessa, Brazil: Plantarum. 368 p.
Lourenço J., Newman E.A., Ventura J.A., Milanez C.R.D., Thomaz L.D., Wandekoken D.T., Enquist B.J. 2021. Soil-associated drivers of plant traits and functional composition in Atlantic Forest coastal tree communities. Ecosphere 12(7): e03629. DOI: 10.1002/ecs2.3629
Magalhães V.B., Espírito-Santo N.B., Salles L.F.P., Soares H., Oliveira P.S. 2018. Secondary seed dispersal by ants in Neotropical cerrado savanna: species-specific effects on seeds and seedlings of Siparuna guianensis (Siparunaceae). Ecological Entomology 43(5): 665–674. DOI: 10.1111/een.12640
Magnago L.F.S., Magrach A., Laurance W.F., Martins S.V., Meira-Neto J.A.A., Simonelli M., Edwards D.P. 2015. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?. Global Change Biology 21(9): 3455–3468. DOI: 10.1111/gcb.12937
Marques M.C.M., Grelle C.E.V. (Eds.). 2021. The Atlantic Forest: History, biodiversity, threats and opportunities of the mega-diverse forest. Switzerland: Springer Nature. 517 p. DOI: 10.1007/978-3-030-55322-7
Menino G.C.O., Nunes Y.R.F., Tolentino G.S., Santos R.M., Azevedo I.F.P., Veloso M.D.M., Fernandes G.W. 2009. A regeneração natural da vegetação ciliar do rio Pandeiros como indicativo da futura composição da comunidade arbórea. MG Biota 2: 36–51.
Menino G.C.O., Nunes Y.R.F., Santos R.M., Fernandes G.W., Fernandes L.A. 2012. Environmental heterogeneity and natural regeneration in riparian vegetation of the Brazilian semi-arid region. Edinburgh Journal of Botany 69(1): 29–51. DOI: 10.1017/S0960428611000400
Metzger J.P., Bustamante M.M.C., Ferreira J., Fernandes G.W., Librán-Embid F., Pillar V.D., Prist P.R., Rodrigues R.R., Veira I.C.G., Overbeck G.E. 2019. Why Brazil needs its legal reserves. Perspectives in Ecology and Conservation 17(3): 91–103. DOI: 10.1016/j.pecon.2019.07.002
Miller J.R., Hobbs R.J. 2007. Habitat Restoration – Do We Know What We're Doing?. Restoration Ecology 15(3): 382–390. DOI: 10.1111/j.1526-100X.2007.00234.x
Miller S.J., Pruitt B.A., Theiling C.H., Fischer J.C., Komlos S. 2012. Reference concepts in ecosystem restoration and environmental benefits analysis (EBA): Principles and practices. Vicksburg, USA: Army Corps of Engineers Vicksburg Ms Engineer Research and Development Center. 18 p.
Miranda C.C., Donato A., Figueiredo P.H.A., Bernini T.A., Roppa C., Trece I.B., Barros L.O. 2019. Levantamento fitossociológico como ferramenta para a restauração florestal da Mata Atlântica, no Médio Paraíba do Sul. Ciência Florestal 29(4): 1601–1613. DOI: 10.5902/1980509833042
Mueller-Dombois D., Ellenberg H. 1974. Aims and methods of vegetation ecology. New York, USA: Wiley. 547 p.
Murray-Smith C., Brummitt N.A., Oliveira-Filho A.T., Bachman S., Moat J., Lughadha E.M., Lucas E.J. 2009. Plant diversity hotspots in the Atlantic Coastal Forests of Brazil. Conservation Biology 23(1): 151–163. DOI: 10.1111/j.1523-1739.2008.01075.x
Negrini M., Aguiar M.D., Vieira C.T., Silva A.C., Higuchi P. 2012. Dispersão, distribuição espacial e estratificação vertical da comunidade arbórea em um fragmento florestal no Planalto Catarinense. Revista Árvore 36(5): 919–930. DOI: 10.1590/S0100-67622012000500014
Nestler J.M., Theiling C.H., Lubinski K.S., Smith D.L. 2010. Reference condition approach to restoration planning. River Research and Applications 26(10): 1199–1219. DOI: 10.1002/rra.1330
Oliveira L.S.B., Marangon L.C., Feliciano A.L.P., de Lima A.S., Cardoso M.O., da Silva V.F. 2011. Florística, classificação sucessional e síndromes de dispersão em um remanescente de Floresta Atlântica, Moreno-PE. Revista Brasileira de Ciências Agrárias 6(3): 502–507. DOI: 10.5039/agraria.v6i3a1384
Oliveira P.E.A.M., Paula F.R. 2001. Fenologia e biologia reprodutiva de plantas de matas de galeria. In: J.F. Ribeiro, C.E.L. Fonseca, J.C. Sousa-Silva (Eds.): Cerrado: caracterização e recuperação de Matas de Galeria. Planaltina, Brazil: EMBRAPA Cerrados. P. 303–328.
Pavoine S. 2020. Adiv: An R package to analyse biodiversity in ecology. Methods in Ecology and Evolution 11(9): 1106–1112. DOI: 10.1111/2041-210X.13430
Pavoine S., Vela E., Gachet S., Bélair G., Bonsall M.B. 2011. Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. Journal of Ecology 99(1): 165–175. DOI: 10.1111/j.1365-2745.2010.01743.x
Quinn G.P., Keough M.J. 2002. Experimental design and data analysis for biologists. Cambridge, UK: Cambridge University Press. 537 p. DOI: 10.1017/CBO9780511806384
R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.r-project.org/
Ribeiro M.C., Martensen A.C., Metzger J.P., Tabarelli M., Scarano F., Fortin M.J. 2011a. The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: F.E. Zachos, J.C. Habel (Eds.): Biodiversity hotspots: distribution and protection of conservation priority areas. Berlin, Germany: Springer. P. 405–434. DOI: 10.1007/978-3-642-20992-5_21
Ribeiro R.A., Lemos-Filho J.P., Ramos A.C.S., Lovato B.M. 2011b. Phylogeography of the endangered rosewood Dalbergia nigra (Fabaceae): insights into the evolutionary history and conservation of the Brazilian Atlantic Forest. Heredity 106(1): 46–57. DOI: 10.1038/hdy.2010.64
Ricotta C., Pavoine S., Bacaro G., Acosta A.T.R. 2012. Functional rarefaction for species abundance data. Methods in Ecology and Evolution 3(3): 519–525. DOI: 10.1111/j.2041-210X.2011.00178.x
Rigueira D.M.G., Rocha P.L.B., Mariano-Neto E. 2013. Forest cover, extinction thresholds and time lags in woody plants (Myrtaceae) in the Brazilian Atlantic Forest: resources for conservation. Biodiversity and Conservation 22(13–14): 3141–3163. DOI: 10.1007/s10531-013-0575-4
Rodrigues A.C., Villa P.M., Ali A., Ferreira-Júnior W., Neri A.V. 2020. Fine-scale habitat differentiation shapes the composition, structure and aboveground biomass but not species richness of a tropical Atlantic forest. Journal of Forestry Research 31(5): 1599–1611. DOI: 10.1007/s11676-019-00994-x
Rodrigues P.M.S., Silva J.O., Schaefer C.E.G.R. 2019. Edaphic properties as key drivers for woody species distributions in tropical savannic and forest habitats. Australian Journal of Botany 67(1): 70–80. DOI: 10.1071/BT17241
Rosenfield M.F., Müller S.C. 2017. Predicting restored communities based on reference ecosystems using a trait-based approach. Forest Ecology and Management 391: 176–183. DOI: 10.1016/j.foreco.2017.02.024
Sánchez L.E., Alger K., Alonso L., Barbosa F., Brito M.C., Laureano F., May P., Roeser H., Kakabadse Y. 2018. Impacts of the Fundão dam failure. A pathway to sustainable and resilient mitigation. Rio Doce Panel Thematic Repot №1. Gland, Switzerland: IUCN. 38 p.
Sansevero J.B.B., Prieto P.V., de Moraes L.F.D., Rodrigues P.J.F.P. 2011. Natural regeneration in plantations of native trees in lowland Brazilian Atlantic Forest: community structure, diversity, and dispersal syndromes. Restoration Ecology 19(3): 379–389. DOI: 10.1111/j.1526-100X.2009.00556.x
SER. 2004. The SER international primer on ecological restoration. Tucson, USA: Society for Ecological Restoration International Science & Policy Working Group. Available from https://www.ser.org/resource/resmgr/custompages/publications/SER_Primer/ser_primer.pdf
Silva F.C., Eira P.A., van Raij B., Silva C.A., Abreu C.A., Gianello C., Pérez D.V., Quaggio J.A., Tedesco M.J., Abreu M.F., Barreto W.O. 1999. Análises químicas para a avaliação da fertilidade do solo. In: F.C. Silva (Ed.): Manual de análises químicas de solos, plantas e fertilizantes. Brasília, Brazil: Embrapa. P. 75–169.
Silva Júnior A.L., Cabral R.L.R., Sartori L., Souza L.C., Miranda F.D., Caldeira M.V.W., Moreira S.O., Godinho T.O. 2020. Evaluation of diversity and genetic structure as strategies for conservation of natural populations of Dalbergia nigra (Vell.) Allemão ex Benth. Cerne 26(4): 435–443. DOI: 10.1590/01047760202026042754
Silva Júnior A.L., Cabral R.L.R., Sartori L., Miranda F.D., Caldeira M.V.W., Moreira S.O., Godinho T.O., Oliveira F.S. 2022. Molecular markers applied to the genetic characterization of Dalbergia nigra: implications for conservation and management. Trees 36(5): 1539–1557. DOI: 10.1007/s00468-022-02309-w
Suding K., Higgs E., Palmer M., Callicott J.B., Anderson C.B., Baker M., Gutrich J.J., Hondula K.L., LaFevor M.C., Larson B.M., Randall A., Ruhl J.B., Schwartz K.Z. 2015. Committing to ecological restoration. Science 348(6235): 638–640. DOI: 10.1126/science.aaa4216
Suganuma M.S., Assis G.B., Melo A.C.G., Durigan G. 2013. Ecossistemas de referência para restauração de matas ciliares: existem padrões de biodiversidade, estrutura florestal e atributos funcionais?. Revista Árvore 37(5): 835–847. DOI: 10.1590/S0100-67622013000500006
Tabarelli M., Villani J.P., Mantovani W. 1994. Estudo comparativo da vegetação de dois trechos de floresta secundária no núcleo Santa Virgínia, Parque Estadual da Serra do Mar, SP. Revista do Instituto Florestal 6: 1–11. DOI: 10.24278/2178-5031.19946499
Temperton V.M., Buchmann N., Buisson E., Durigan G., Kazmierczak Ł., Perring M.P., Dechoum M.S., Veldman J.W., Overbeck G.E. 2019. Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration. Restoration Ecology 27(4): 705–719. DOI: 10.1111/rec.12989
Toma T.S.P., Overbeck G.E., Mendonça M.S., Fernandes G.W. 2023. Optimal references for ecological restoration: the need to protect references in the tropics. Perspectives in Ecology and Conservation 21(1): 25–32. DOI: 10.1016/j.pecon.2023.01.003
Turchetto F., Araujo M.M., Callegaro R.M., Griebeler A.M., Mezzomo J.C., Berghetti Á.L.P., Rorato D.G. 2017. Phytosociology as a tool for forest restoration: a study case in the extreme South of Atlantic Forest Biome. Biodiversity and Conservation 26(6): 1463–1480. DOI: 10.1007/s10531-017-1310-3
van der Sande M.T., Powers J.S., Kuyper T.W., Norden N., Salgado-Negret B., Almeida J.S., Bongers F., Delgado D., Dent D.H., Derroire G., do Espirito Santo M.M., Dupuy J.M., Fernandes G.W., Finegan B., Gavito M.E., Hernández-Stefanoni J.L., Jakovac C.C., Jones I.L., Veloso M.D.M., Meave J.A., Mora F., Muñoz R., Pérez-Cárdenas N., Piotto D., Álvarez-Dávila E., Caceres-Siani Y., Dalban-Pilon C., Dourdain A., Du D.V., Villalobos D.G. et al. 2023. Soil resistance and recovery during neotropical forest succession. Philosophical Transactions of the Royal Society B: Biological Sciences 378(1867): 20210074. DOI: 10.1098/rstb.2021.0074
Varty N. 1998. Dalbergia nigra (errata version published in 2016). In: The IUCN Red List of Threatened Species 1998: e.T32985A86221269. Available from https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32985A9741135.en
Veloso M.D.M., Nunes Y.R.F., Azevedo I.F.P., Rodrigues P.M.S., Fernandes L.A., Santos R.M.D., Fernandes G.W., Pereira J.A.A. 2014. Floristic and structural variations of the arboreal community in relation to soil properties in the Pandeiros river riparian forest, Minas Gerais, Brazil. Interciencia 39(9): 628–636.
Whitham T.G., Bailey J.K., Schweitzer J.A., Shuster S.M., Bangert R.K., LeRoy C.J., Lonsdorf E.V., Allan G.J., DiFazio S.P., Potts B.M., Fischer D.G., Gehring C.A., Lindroth R.L., Marks J.C., Hart S.C., Wimp G.M., Wooley S.C. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics 7(7): 510–523. DOI: 10.1038/nrg1877