Статья

Название статьи ПОВЕДЕНЧЕСКАЯ ЛАТЕРАЛИЗАЦИЯ ЛЕБЕДЕЙ В ОТВЕТ НА АНТРОПОГЕННОЕ БЕСПОКОЙСТВО РАЗЛИЧАЕТСЯ В ЗАВИСИМОСТИ ОТ ТИПА ЛОКОМОЦИИ
Авторы

Эльмира Мидхатовна Зайнагутдинова, к.б.н., с.н.с. кафедры зоологии позвоночных факультета биологии Санкт-Петербургского государственного университета (199034, Россия, Санкт-Петербург, Университетская набережная, д. 7-9); iD ORCID: https://orcid.org/0000-0003-0476-7383; e-mail: Elmira.zaynagutdinova@gmail.com
Диана Романовна Поликарпова, аспирант кафедры зоологии позвоночных факультета биологии Санкт-Петербургского государственного университета (199034, Россия, Санкт-Петербург, Университетская набережная, д. 7-9); iD ORCID: https://orcid.org/0000-0003-3463-6587; e-mail: pitohui.53@gmail.com
Софья Борисовна Розенфельд, к.б.н., н.с. Центра кольцевания птиц России Института проблем экологии и эволюции имени А.Н. Северцова РАН (119071, Россия, Москва, Ленинский проспект, д. 33); iD ORCID: https://orcid.org/0000-0003-0015-4547; e-mail: rozenfeldbro@mail.ru

Библиографическое описание статьи

Zaynagutdinova E.M., Polikarpova D.R., Rozenfeld S.B. 2024. Behavioural lateralisation of swans in response to anthropogenic disturbance differs according to the locomotion type // Nature Conservation Research. Vol. 9(1). P. 20–29. https://dx.doi.org/10.24189/ncr.2024.003

Рубрика Оригинальные статьи
DOI https://dx.doi.org/10.24189/ncr.2024.003
Аннотация

Численность европейской популяции Cygnus columbianus bewickii в последние десятилетия неуклонно снижается. Антропогенное беспокойство может быть одной из причин наблюдаемого снижения численности. Оно влияет на поведение животных, включая поведенческую латерализацию, поэтому информация о влиянии антропогенного беспокойства на поведенческую латерализацию имеет значение для сохранения биоразнообразия. Поведенческая латерализация проявляется в предпочтении использовать один из парных органов (конечности или сенсорные органы) и в предпочтении обходить препятствия с определенной стороны. Предыдущие исследования поведенческой латерализации не включали тип локомоции, как независимый фактор в анализ, однако он может влиять на поведенческую латерализацию. Таким образом, поведенческая латерализация может подвергаться влиянию различных факторов, которые следует учитывать при выполнении исследования. Мы изучили влияние антропогенного беспокойства на поведенческую латерализацию лебедей в зависимости от типа локомоции (плавания и полета). Мы проанализировали 492 фотографии с аэрофотосъемок двух видов лебедей: Cygnus columbianus bewickii и Cygnus cygnus на полуостровах Ямал и Гыдан. Фотографии были сделаны с самолета, в то время, когда птицы избегали его как источник антропогенного беспокойства. Встречались как одиночные пары без птенцов, так и с птенцами. Пары птиц могли быть также в стаях. Птицы плыли по воде или летели в небе. Мы обнаружили, что плавающие лебеди чаще держали источник антропогенного беспокойства справа от себя и наблюдали за ним правым глазом. Лебеди в полете, напротив, чаще держали источник антропогенного беспокойства слева от себя и в поле зрения левого глаза. Наличие птенцов значимо не влияло на поведенческую латерализацию, но усиливало ее. C. c. bewickii и C. cygnus проявляли сходную поведенческую латерализацию, когда плыли. Эти результаты были одинаковыми, как для ведомых, так и для ведущих птиц. Разница в поведенческой латерализации летящих и плывущих птиц может быть вызвана тем, что лебеди в полете испытывают больший страх от наличия самолета, чем когда они находятся на воде. Мы считаем, что тип локомоции влияет на поведенческую латерализацию по отношению к антропогенному беспокойству, поэтому при сравнении результатов исследований по латерализации поведения мы рекомендуем обращать внимание на сопутствующие факторы, в том числе и на тип локомоции животных. Поскольку летящие птицы держали самолет слева от себя и в поле зрения левого глаза, что указывает на то, что летящие птицы испытывают больший стресс, чем плывущие, мы рекомендуем обращать внимание при проведении исследований на методы и расстояние до животных и не допускать взлета птиц, чтобы не стрессировать животных во время учетов.

Ключевые слова

Cygnus columbianus bewickii, Cygnus cygnus, беспокойство, визуальная латерализация, моторная латерализация, плавание, полет, полуостров Ямал, полуостров Гыдан, птенцы

Информация о статье

Поступила: 04.07.2023. Исправлена: 01.11.2023. Принята к опубликованию: 30.11.2023.

Полный текст статьи
Список цитируемой литературы

Alonso Y. 1998. Lateralization of visual guided behaviour during feeding in zebra finches (Taeniopygia guttata). Behavioural Processes 43(3): 257–263. DOI: 10.1016/s0376-6357(98)00015-1
Austin N.P., Rogers L.J. 2014. Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii). Applied Animal Behaviour Science 151: 43–50. DOI: 10.1016/j.applanim.2013.11.011
Beauchamp G. 2013. Foraging success in a wild species of bird varies depending on which eye is used for anti-predator vigilance. Laterality 18(2): 194–202. DOI: 10.1080/1357650X.2011.648194
Baciadonna L., Zucca P., Samour J. 2022. Laterality preferences at rest and predatory behaviour of the Gyrfalcon (Falco rusticolus): An alpha predator of the sky. Laterality 27(1): 86–100. DOI: 10.1080/1357650X.2021.1958831
Beekman J., Koffijberg K., Wahl J., Kowallik K., Hall C., Devos K., Clausen P., Hornman M., Laubek B., Luigujoe L., Wieloch M., Boland H., Svazas S., Nilsson L., Stipniece A., Keller V., Gaudard C., Degen A., Shimmings P., Larsen B.H., Portolou D., Langendoen T., Wood K.A., Rees E.C. 2019. Long-term population trends and shifts in distribution of Bewick's swans Cygnus columbianus bewickii wintering in northwest Europe. Wildfowl Special Issue 5: 73–102.
Bellebaum J., Kruckenberg H. 2009. Impact of hunting: from escape distance to the loss of feeding area. In: Goose Specialist Group 12th Meeting. Hölviken, Sweden. P. 11.
Bhagavatula P.S., Claudianos C., Ibbotson M.R., Srinivasan M.V. 2014. Behavioral lateralization and optimal route choice in flying budgerigars. PLoS Computational Biology 10(3): e1003473. DOI: 10.1371/journal.pcbi.1003473
BirdLife International. 2021. Cygnus columbianus (Europe assessment). In: The IUCN Red List of Threatened Species 2021: e.T22679862A166191206. Available from https://dx.doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22679862A166191206.en
Black J.M. 2001. Fitness consequences of long-term pair bonds in barnacle geese: monogamy in the extreme. Behavioral Ecology 12(5): 640–645. DOI: 10.1093/beheco/12.5.640
Boiko D., Kampe-Persson H. 2012. Moult migration of Latvian whooper swans Cygnus cygnus. Ornis Fennica 89(4): 273–280.
Boiko D., Wikelski M. 2019. Moulting sites of Latvian Whooper Swan Cygnus cygnus cygnets fitted with GPS-GSM transmitters. Wildfowl Special Issue 5: 229–241. DOI: 10.1134/S1062359018070178
Bonati B., Csermely D., Sovrano V.A. 2013. Looking at a predator with the left or right eye: Asymmetry of response in lizards. Laterality 18(3): 329–339. DOI: 10.1080/1357650X.2012.673623
Charles A., Mercera B., Delfour F. 2021. Bottlenose dolphins' (Tursiops truncatus) visual and motor laterality depending on emotional contexts. Behavioural Processes 187: 104374. DOI: 10.1016/j.beproc.2021.104374
Davies M.N.O., Green P.R., 1991. Footedness in pigeons, or simply sleight of foot?. Animal Behaviour 42(2): 311–312. DOI: 10.1016/S0003-3472(05)80562-7
Dharmaretnam M., Rogers L.J. 2005. Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behavioural Brain Research 162(1): 62–70. DOI: 10.1016/j.bbr.2005.03.012
Earnst S.L. 1992. The Timing of Wing Molt in Tundra Swans: Energetic and Non-Energetic Constraints. Condor 94(4): 847–856. DOI: 10.2307/1369282
Fang L., Zhang J., Zhao Q., Solovyeva D., Vangeluwe D., Rozenfeld S.B., Lameris T., Xu Z., Bysykatova-Harmey I., Batbayar N., Konishi K., Moon O.K., He B., Koyama K., Moriguchi S., Shimada T., Park J., Kim H., Liu G., Hu B., Gao D., Ruan L., Natsagdorj T., Davaasuren B., Antonov A., Mylnikova A., Stepanov A., Kirtaev G., Zamyatin D., Kazantzidis S., Sekijima T. et al. 2020. Two distinct flyways with different population trends of Bewick's Swan Cygnus columbianus bewickii in East Asia. Wildfowl 6: 13–42.
Féret M., Bêty J., Gauthier G., Giroux J.F., Picard G. 2005. Are abdominal profiles useful to assess body condition of spring staging Greater snow geese?. Condor 107(3): 694–702. DOI: 10.1093/condor/107.3.694
Franklin W.E., Lima S.L. 2001. Laterality in avian vigilance: do sparrows have a favourite eye?. Animal Behaviour 62(5): 879–885. DOI: 10.1006/anbe.2001.1826
Friedmann H., Davis M. 1938. “Left-handedness" in parrots. Auk 55(3): 478–480.
Güntürkün O., Diekamp B., Manns M., Nottelmann F., Prior H., Schwarz A., Skiba M. 2000. Asymmetry pays: Visual lateralization improves discrimination success in pigeons. Current Biology 10(17): 1079–1081. DOI: 10.1016/S0960-9822(00)00671-0
Gutiérrez J.S., Soriano-Redondo A. 2020. Laterality in foraging phalaropes promotes phenotypically assorted groups. Behavioral Ecology 31(6): 1429–1435. DOI: 10.1093/beheco/araa101
Heppner F.H., Convissar J.L., Moonan D.E., Anderson J.G. 1985. Visual angle and formation flight in Canada Geese (Branta canadensis). Auk 102(1): 195–198. DOI: 10.2307/4086847
Hodges J.I., Eldridge W.D. 2001. Aerial surveys of eiders and other waterbirds on the eastern Arctic coast of Russia. Wildfowl 52: 127–142.
Jeffery G., Erskine L. 2005. Variations in the architecture and development of the vertebrate optic chiasm. Progress in Retinal and Eye Research 24(6): 721–753. DOI: 10.1016/j.preteyeres.2005.04.005
Karenina K., Giljov A. 2022. Lateralization in feeding is food type specific and impacts feeding success in wild birds. Ecology and Evolution 12(2): e8598. DOI: 10.1002/ece3.8598
King J.G., Cooper B.A., Ritchie R.J. 1998. Mixed-species Swan flocks migrating in East-Central Alaska. Northwestern Naturalist 79(3): 104–107. DOI: 10.2307/3536839
Koblik E.A., Redkin Ya.A. 2004. Basic list of goose-like (Anseriformes) of the world fauna. Kazarka 10: 15–46. [In Russian]
Koboroff A., Kaplan G., Rogers L.J. 2008. Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator. Brain Research Bulletin 76(3): 304–306. DOI: 10.1016/j.brainresbull.2008.02.015
Krakauer A.H., Blundell M.A., Scanlan T.N., Weschsler M.S., McCloskey E.A., Yu J.H., Patricelli G.L. 2016. Successfully mating male sage-grouse show greater laterality in courtship and aggressive interactions. Animal Behaviour 111: 261–267. DOI: 10.1016/j.anbehav.2015.10.031
Kruckenberg H., Bellebaum J., Wille V. 2008. Escape distances of staging Arctic geese along the flyway. Vogelwelt 129: 169–173.
Leliveld L.M., Langbein J., Puppe B. 2013. The emergence of emotional lateralization: evidence in non-human vertebrates and implications for farm animals. Applied Animal Behaviour Science 145(1–2): 1–14. DOI: 10.1016/j.applanim.2013.02.002
Levy J. 1977. The mammalian brain and the adaptive advantage of cerebral asymmetry. Annals of the New York Academy of Sciences 299: 264–272. DOI: 10.1111/j.1749-6632.1977.tb41913.x
Lippolis G., Bisazza A., Rogers L.J., Vallortigara G. 2002. Lateralisation of predator avoidance responses in three species of toads. Laterality 7(2): 163–183. DOI: 10.1080/13576500143000221
Lippolis G., Westman W., McAllan B., Rogers L. 2005. Lateralisation of escape responses in the stripe-faced dunnart, Sminthopsis macroura (Dasyuridae: Marsupialia). Laterality 10(5): 457–470. DOI: 10.1080/13576500442000210
Magat M., Brown C. 2009. Laterality enhances cognition in Australian parrots. Proceedings of the Royal Society B: Biological Sciences 276: 4155–4162. DOI: 10.1098/rspb.2009.1397
Mainguy J., Bêty J., Gauthier G., Giroux J.F. 2002. Are body condition and reproductive effort of laying greater snow geese affected by the spring hunt?. Condor 104(1): 156–161. DOI: 10.1093/condor/104.1.156
Mandel J.T., Ratcliffe J.M., Cerasale D.J., Winkler D.W. 2008. Laterality and flight: concurrent tests of side-bias and optimality in flying tree swallows. PLoS ONE 3(3): e1748. DOI: 10.1371/journal.pone.0001748
Martín J., López P., Bonati B., Csermely D. 2010. Lateralization when monitoring predators in the wild: A left eye control in the Common Wall Lizard (Podarcis muralis). Ethology 116(12): 1226–1233. DOI: 10.1111/j.1439-0310.2010.01836.x
Mench J.A., Andrew R.J. 1986. Lateralization of a food search task in the domestic chick. Behavioral and Neural Biology 46(2): 107–114. DOI: 10.1016/S0163-1047(86)90570-4
Nice M.M. 1962. Development of behavior in precocial birds. Transactions of the Linnaean Society of New York 8: 1–211.
Pennycuick C.J., Einarsson O., Bradbury T.A.M., Owen M. 1996. Migrating Whooper Swans Cygnus cygnus: satellite tracks and flight performance calculations. Journal of Avian Biology 27(2): 118–134. DOI: 10.2307/3677141
R Core Team. 2021. R: a language and envi­ronment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from http://www.R-project.org
Randler C. 2005. Eye preference for vigilance during feeding in coot Fulica atra, and geese Anser anser and Anser cygnoides. Laterality: Asymmetries of Body, Brain and Cognition 10(6): 535–543.
Rashid N., Andrew R.J. 1989. Right hemisphere advantage for topographical orientation in the domestic chick. Neuropsychologia 27(7): 937–948. DOI: 10.1016/0028-3932(89)90069-9
Red Data Book of the Russian Federation. Animals. Moscow: VNII Ecologiya, 2021. 1128 p. [In Russian]
Riddington R., Hassall M., Lane S.J., Turner P.A., Walters R. 1996. The impact of disturbance on the behaviour and energy budgets of Brent Geese Branta b. bernicla. Bird Study 43(3): 269–279. DOI: 10.1080/00063659609461019
Rogers L.J. 2002. Advantages and disadvantages of lateralization. In: L.J. Rogers, R.J. Andrew (Eds.): Comparative vertebrate lateralization. New York, USA: Cambridge University Press. P. 126–153. DOI: 10.1017/CBO9780511546372.006
Rogers L.J. 2010. Relevance of brain and behavioural lateralization to animal welfare. Applied Animal Behaviour Science 127(1–2): 1–11. DOI: 10.1016/j.applanim.2010.06.008
Rogers L.J., Kaplan G. 2005. An eye for a predator: Lateralization in birds with particular reference to the Australian Magpie. In: Y. Malashichev, A.W. Deckel (Eds.): Behavioural and Morphological Asymmetries in Vertebrates. Georgetown: Landes Boiscience. P. 47–57.
Rogers L.J., Kaplan G. 2019. Does functional lateralization in birds have any implications for their welfare?. Symmetry 11(8): 1043. DOI: 10.3390/sym11081043
Rogers L.J., Workman L. 1993. Footedness in birds. Animal Behaviour 45(2): 409–411. DOI: 10.1006/anbe.1993.1049
Rogers L.J., Zucca P., Vallortigara G. 2004. Advantages of having a lateralized brain. Proceedings of the Royal Society B: Biological Sciences 271(Suppl.6): 420–422. DOI: 10.1098/rsbl.2004.0200
Rogers L.J., Vallortigara G., Andrew R.J. 2013. Divided brains: the biology and behaviour of brain asymmetries. New York: Cambridge University Press. 229 p.
Rogers L.J., Koboroff A., Kaplan G. 2018. Lateral asymmetry of brain and behaviour in the zebra finch, Taeniopygia guttata. Symmetry 10(12): 679. DOI: 10.3390/sym10120679
Scott D.K. 1980. Functional aspects of the pair bond in winter in Bewick's swans (Cygnus columbianus bewickii). Behavioral Ecology and Sociobiology 7(4): 323–327. DOI: 10.1007/BF00300673
Syroechkovski E.E. 2002. Distribution and population estimates for swans in the Siberian Arctic in the 1990s. Waterbirds 25: 100–113.
Vallortigara G., Rogers L.J. 2020. A function for the bicameral mind. Cortex 124: 274–285. DOI: 10.1016/j.cortex.2019.11.018
Vallortigara G., Versace E. 2017. Laterality at the neural, cognitive, and behavioral levels. In: J. Call, G.M. Burghardt, I.M. Pepperberg, C.T. Snowdon, T. Zentall (Eds): APA Handbook of Comparative Psychology: Basic Concepts, Methods, Neural Substrate, and Behavior. Washington: American Psychological Association. P. 557–577. DOI: 10.1037/0000011-027
Vallortigara G., Cozzutti C., Tommasi L., Rogers L.J. 2001. How birds use their eyes: Opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick. Current Biology 11(1): 29–33. DOI: 10.1016/S0960-9822(00)00027-0
Vallortigara G., Chiandetti C., Sovrano V.A. 2011. Brain asymmetry (animal). Wiley Interdisciplinary Reviews: Cognitive Science 2(2): 146–157. DOI: 10.1002/wcs.100
Vangeluwe D., Rozenfeld S.B., Volkov S.V., Kazantzidis S., Morosov V.V., Zamyatin D.O., Kirtaev G.V. 2018. Migrations of Bewick's swan (Cygnus bewickii): new data on tagging the migration routes, stopovers, and wintering sites. Biology Bulletin 45(7): 706–717. DOI: 10.1134/S1062359018070178
Vince M.A. 1964. Use of the feet in feeding by the Great Tit Parus major. Ibis 106(4): 508–529. DOI: 10.1111/j.1474-919X.1964.tb03730.x
Workman L., Andrew R.J. 1986. Asymmetries of eye use in birds. Animal Behaviour 34(5): 1582–1584. DOI: 10.1016/S0003-3472(86)80235-4
Zaynagutdinova E., Karenina K., Giljov A. 2020. Lateralization of vigilance in geese: influence of flock size and distance to the source of disturbance. Biological Communications 65(3): 252–261. DOI: 10.21638/spbu03.2020.305
Zaynagutdinova E., Karenina K., Giljov A. 2021. Lateralization in monogamous pairs: wild geese prefer to keep their partner in the left hemifield except when disturbed. Current Zoology 67(4): 419–429. DOI: 10.1093/cz/zoaa074