Article

Article name BEHAVIOURAL LATERALISATION OF SWANS IN RESPONSE TO ANTHROPOGENIC DISTURBANCE DIFFERS ACCORDING TO THE LOCOMOTION TYPE
Authors

Elmira M. Zaynagutdinova, PhD, Senior Researcher of the Saint Petersburg State University (199034, Russia, Saint Petersburg, Universitetskaya Embankment 7-9); iD ORCID: https://orcid.org/0000-0003-0476-7383; e-mail: Elmira.zaynagutdinova@gmail.com
Diana R. Polikarpova, PhD Student of the Saint Petersburg State University (199034, Russia, Saint Petersburg, Universitetskaya Embankment 7-9); iD ORCID: https://orcid.org/0000-0003-3463-6587; e-mail: pitohui.53@gmail.com
Sofia B. Rozenfeld, PhD, Researcher at the Center for Bird Banding of Russia at the A.N. Severtsov Institute of Ecology and Evolution of the RAS (119071, Russia, Moscow, Leninsky Avenue 33); iD ORCID: https://orcid.org/0000-0003-0015-4547; e-mail: rozenfeldbro@mail.ru

Reference to article

Zaynagutdinova E.M., Polikarpova D.R., Rozenfeld S.B. 2024. Behavioural lateralisation of swans in response to anthropogenic disturbance differs according to the locomotion type. Nature Conservation Research 9(1): 20–29. https://dx.doi.org/10.24189/ncr.2024.003

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2024.003
Abstract

The European population of Cygnus columbianus bewickii has a declining trend in number of individuals. Anthropogenic disturbance could be one of the reasons for this decline. Disturbance influences animal behaviour, including the manifestation of behavioural lateralisation. Therefore, investigating the impact of anthropogenic disturbance on behavioural lateralisation is essential for biodiversity conservation. Behavioural lateralisation manifests itself in a preference to use one of two paired organs (limbs or sensory organs) and a preference to avoid obstacles from a certain side. Earlier studies of behavioural lateralisation did not consider the locomotion type as an independent variable factor in the analysis, although it could affect the manifestation of behavioural lateralisation. We studied the influence of anthropogenic disturbance on behavioural lateralisation of swans, depending on the type of locomotion (swimming or flying). We have analysed 492 photos from aerial counts of two swan species (Cygnus columbianus bewickii, C. cygnus) in Yamal Peninsula and Gydan Peninsula. The photos were taken from a plane, while the birds were escaping from it as a source of anthropogenic disturbance. Pairs without and with chicks alone or in flocks were encountered swimming or flying. We found that swimming swans had a strong right-sided bias and right-eye bias for avoidance and observing the source of anthropogenic disturbance, and flying swans had a left bias. Swimming C. c. bewickii and C. cygnus exhibited similar behavioural lateralisation. These results were the same for following and leading birds. The presence of chicks did not change the direction of behavioural lateralisation but strengthened it for the following partners. The differences in behavioural lateralisation could be caused by the fact that swans in flight experience greater fear of a present aircraft than when they are on water. We conclude that the locomotion types influence behavioural lateralisation in response to anthropogenic disturbance. We recommend paying attention to accompanying factors when comparing the results of lateralisation studies. As the left side bias of flying birds in our study indicates that flying birds are more stressed than swimming ones, we recommend not forcing birds to fly during observations to reduce their stress.

Keywords

anxiety, chicks, Cygnus columbianus bewickii, Cygnus cygnus, flying, Gydan Peninsula, motor lateralisation, swimming, visual lateralisation, Yamal Peninsula

Artice information

Received: 04.07.2023. Revised: 01.11.2023. Accepted: 30.11.2023.

The full text of the article
References

Alonso Y. 1998. Lateralization of visual guided behaviour during feeding in zebra finches (Taeniopygia guttata). Behavioural Processes 43(3): 257–263. DOI: 10.1016/s0376-6357(98)00015-1
Austin N.P., Rogers L.J. 2014. Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii). Applied Animal Behaviour Science 151: 43–50. DOI: 10.1016/j.applanim.2013.11.011
Beauchamp G. 2013. Foraging success in a wild species of bird varies depending on which eye is used for anti-predator vigilance. Laterality 18(2): 194–202. DOI: 10.1080/1357650X.2011.648194
Baciadonna L., Zucca P., Samour J. 2022. Laterality preferences at rest and predatory behaviour of the Gyrfalcon (Falco rusticolus): An alpha predator of the sky. Laterality 27(1): 86–100. DOI: 10.1080/1357650X.2021.1958831
Beekman J., Koffijberg K., Wahl J., Kowallik K., Hall C., Devos K., Clausen P., Hornman M., Laubek B., Luigujoe L., Wieloch M., Boland H., Svazas S., Nilsson L., Stipniece A., Keller V., Gaudard C., Degen A., Shimmings P., Larsen B.H., Portolou D., Langendoen T., Wood K.A., Rees E.C. 2019. Long-term population trends and shifts in distribution of Bewick's swans Cygnus columbianus bewickii wintering in northwest Europe. Wildfowl Special Issue 5: 73–102.
Bellebaum J., Kruckenberg H. 2009. Impact of hunting: from escape distance to the loss of feeding area. In: Goose Specialist Group 12th Meeting. Hölviken, Sweden. P. 11.
Bhagavatula P.S., Claudianos C., Ibbotson M.R., Srinivasan M.V. 2014. Behavioral lateralization and optimal route choice in flying budgerigars. PLoS Computational Biology 10(3): e1003473. DOI: 10.1371/journal.pcbi.1003473
BirdLife International. 2021. Cygnus columbianus (Europe assessment). In: The IUCN Red List of Threatened Species 2021: e.T22679862A166191206. Available from https://dx.doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22679862A166191206.en
Black J.M. 2001. Fitness consequences of long-term pair bonds in barnacle geese: monogamy in the extreme. Behavioral Ecology 12(5): 640–645. DOI: 10.1093/beheco/12.5.640
Boiko D., Kampe-Persson H. 2012. Moult migration of Latvian whooper swans Cygnus cygnus. Ornis Fennica 89(4): 273–280.
Boiko D., Wikelski M. 2019. Moulting sites of Latvian Whooper Swan Cygnus cygnus cygnets fitted with GPS-GSM transmitters. Wildfowl Special Issue 5: 229–241. DOI: 10.1134/S1062359018070178
Bonati B., Csermely D., Sovrano V.A. 2013. Looking at a predator with the left or right eye: Asymmetry of response in lizards. Laterality 18(3): 329–339. DOI: 10.1080/1357650X.2012.673623
Charles A., Mercera B., Delfour F. 2021. Bottlenose dolphins' (Tursiops truncatus) visual and motor laterality depending on emotional contexts. Behavioural Processes 187: 104374. DOI: 10.1016/j.beproc.2021.104374
Davies M.N.O., Green P.R., 1991. Footedness in pigeons, or simply sleight of foot?. Animal Behaviour 42(2): 311–312. DOI: 10.1016/S0003-3472(05)80562-7
Dharmaretnam M., Rogers L.J. 2005. Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behavioural Brain Research 162(1): 62–70. DOI: 10.1016/j.bbr.2005.03.012
Earnst S.L. 1992. The Timing of Wing Molt in Tundra Swans: Energetic and Non-Energetic Constraints. Condor 94(4): 847–856. DOI: 10.2307/1369282
Fang L., Zhang J., Zhao Q., Solovyeva D., Vangeluwe D., Rozenfeld S.B., Lameris T., Xu Z., Bysykatova-Harmey I., Batbayar N., Konishi K., Moon O.K., He B., Koyama K., Moriguchi S., Shimada T., Park J., Kim H., Liu G., Hu B., Gao D., Ruan L., Natsagdorj T., Davaasuren B., Antonov A., Mylnikova A., Stepanov A., Kirtaev G., Zamyatin D., Kazantzidis S., Sekijima T. et al. 2020. Two distinct flyways with different population trends of Bewick's Swan Cygnus columbianus bewickii in East Asia. Wildfowl 6: 13–42.
Féret M., Bêty J., Gauthier G., Giroux J.F., Picard G. 2005. Are abdominal profiles useful to assess body condition of spring staging Greater snow geese?. Condor 107(3): 694–702. DOI: 10.1093/condor/107.3.694
Franklin W.E., Lima S.L. 2001. Laterality in avian vigilance: do sparrows have a favourite eye?. Animal Behaviour 62(5): 879–885. DOI: 10.1006/anbe.2001.1826
Friedmann H., Davis M. 1938. “Left-handedness" in parrots. Auk 55(3): 478–480.
Güntürkün O., Diekamp B., Manns M., Nottelmann F., Prior H., Schwarz A., Skiba M. 2000. Asymmetry pays: Visual lateralization improves discrimination success in pigeons. Current Biology 10(17): 1079–1081. DOI: 10.1016/S0960-9822(00)00671-0
Gutiérrez J.S., Soriano-Redondo A. 2020. Laterality in foraging phalaropes promotes phenotypically assorted groups. Behavioral Ecology 31(6): 1429–1435. DOI: 10.1093/beheco/araa101
Heppner F.H., Convissar J.L., Moonan D.E., Anderson J.G. 1985. Visual angle and formation flight in Canada Geese (Branta canadensis). Auk 102(1): 195–198. DOI: 10.2307/4086847
Hodges J.I., Eldridge W.D. 2001. Aerial surveys of eiders and other waterbirds on the eastern Arctic coast of Russia. Wildfowl 52: 127–142.
Jeffery G., Erskine L. 2005. Variations in the architecture and development of the vertebrate optic chiasm. Progress in Retinal and Eye Research 24(6): 721–753. DOI: 10.1016/j.preteyeres.2005.04.005
Karenina K., Giljov A. 2022. Lateralization in feeding is food type specific and impacts feeding success in wild birds. Ecology and Evolution 12(2): e8598. DOI: 10.1002/ece3.8598
King J.G., Cooper B.A., Ritchie R.J. 1998. Mixed-species Swan flocks migrating in East-Central Alaska. Northwestern Naturalist 79(3): 104–107. DOI: 10.2307/3536839
Koblik E.A., Redkin Ya.A. 2004. Basic list of goose-like (Anseriformes) of the world fauna. Kazarka 10: 15–46. [In Russian]
Koboroff A., Kaplan G., Rogers L.J. 2008. Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator. Brain Research Bulletin 76(3): 304–306. DOI: 10.1016/j.brainresbull.2008.02.015
Krakauer A.H., Blundell M.A., Scanlan T.N., Weschsler M.S., McCloskey E.A., Yu J.H., Patricelli G.L. 2016. Successfully mating male sage-grouse show greater laterality in courtship and aggressive interactions. Animal Behaviour 111: 261–267. DOI: 10.1016/j.anbehav.2015.10.031
Kruckenberg H., Bellebaum J., Wille V. 2008. Escape distances of staging Arctic geese along the flyway. Vogelwelt 129: 169–173.
Leliveld L.M., Langbein J., Puppe B. 2013. The emergence of emotional lateralization: evidence in non-human vertebrates and implications for farm animals. Applied Animal Behaviour Science 145(1–2): 1–14. DOI: 10.1016/j.applanim.2013.02.002
Levy J. 1977. The mammalian brain and the adaptive advantage of cerebral asymmetry. Annals of the New York Academy of Sciences 299: 264–272. DOI: 10.1111/j.1749-6632.1977.tb41913.x
Lippolis G., Bisazza A., Rogers L.J., Vallortigara G. 2002. Lateralisation of predator avoidance responses in three species of toads. Laterality 7(2): 163–183. DOI: 10.1080/13576500143000221
Lippolis G., Westman W., McAllan B., Rogers L. 2005. Lateralisation of escape responses in the stripe-faced dunnart, Sminthopsis macroura (Dasyuridae: Marsupialia). Laterality 10(5): 457–470. DOI: 10.1080/13576500442000210
Magat M., Brown C. 2009. Laterality enhances cognition in Australian parrots. Proceedings of the Royal Society B: Biological Sciences 276: 4155–4162. DOI: 10.1098/rspb.2009.1397
Mainguy J., Bêty J., Gauthier G., Giroux J.F. 2002. Are body condition and reproductive effort of laying greater snow geese affected by the spring hunt?. Condor 104(1): 156–161. DOI: 10.1093/condor/104.1.156
Mandel J.T., Ratcliffe J.M., Cerasale D.J., Winkler D.W. 2008. Laterality and flight: concurrent tests of side-bias and optimality in flying tree swallows. PLoS ONE 3(3): e1748. DOI: 10.1371/journal.pone.0001748
Martín J., López P., Bonati B., Csermely D. 2010. Lateralization when monitoring predators in the wild: A left eye control in the Common Wall Lizard (Podarcis muralis). Ethology 116(12): 1226–1233. DOI: 10.1111/j.1439-0310.2010.01836.x
Mench J.A., Andrew R.J. 1986. Lateralization of a food search task in the domestic chick. Behavioral and Neural Biology 46(2): 107–114. DOI: 10.1016/S0163-1047(86)90570-4
Nice M.M. 1962. Development of behavior in precocial birds. Transactions of the Linnaean Society of New York 8: 1–211.
Pennycuick C.J., Einarsson O., Bradbury T.A.M., Owen M. 1996. Migrating Whooper Swans Cygnus cygnus: satellite tracks and flight performance calculations. Journal of Avian Biology 27(2): 118–134. DOI: 10.2307/3677141
R Core Team. 2021. R: a language and envi­ronment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from http://www.R-project.org
Randler C. 2005. Eye preference for vigilance during feeding in coot Fulica atra, and geese Anser anser and Anser cygnoides. Laterality: Asymmetries of Body, Brain and Cognition 10(6): 535–543.
Rashid N., Andrew R.J. 1989. Right hemisphere advantage for topographical orientation in the domestic chick. Neuropsychologia 27(7): 937–948. DOI: 10.1016/0028-3932(89)90069-9
Red Data Book of the Russian Federation. Animals. Moscow: VNII Ecologiya, 2021. 1128 p. [In Russian]
Riddington R., Hassall M., Lane S.J., Turner P.A., Walters R. 1996. The impact of disturbance on the behaviour and energy budgets of Brent Geese Branta b. bernicla. Bird Study 43(3): 269–279. DOI: 10.1080/00063659609461019
Rogers L.J. 2002. Advantages and disadvantages of lateralization. In: L.J. Rogers, R.J. Andrew (Eds.): Comparative vertebrate lateralization. New York, USA: Cambridge University Press. P. 126–153. DOI: 10.1017/CBO9780511546372.006
Rogers L.J. 2010. Relevance of brain and behavioural lateralization to animal welfare. Applied Animal Behaviour Science 127(1–2): 1–11. DOI: 10.1016/j.applanim.2010.06.008
Rogers L.J., Kaplan G. 2005. An eye for a predator: Lateralization in birds with particular reference to the Australian Magpie. In: Y. Malashichev, A.W. Deckel (Eds.): Behavioural and Morphological Asymmetries in Vertebrates. Georgetown: Landes Boiscience. P. 47–57.
Rogers L.J., Kaplan G. 2019. Does functional lateralization in birds have any implications for their welfare?. Symmetry 11(8): 1043. DOI: 10.3390/sym11081043
Rogers L.J., Workman L. 1993. Footedness in birds. Animal Behaviour 45(2): 409–411. DOI: 10.1006/anbe.1993.1049
Rogers L.J., Zucca P., Vallortigara G. 2004. Advantages of having a lateralized brain. Proceedings of the Royal Society B: Biological Sciences 271(Suppl.6): 420–422. DOI: 10.1098/rsbl.2004.0200
Rogers L.J., Vallortigara G., Andrew R.J. 2013. Divided brains: the biology and behaviour of brain asymmetries. New York: Cambridge University Press. 229 p.
Rogers L.J., Koboroff A., Kaplan G. 2018. Lateral asymmetry of brain and behaviour in the zebra finch, Taeniopygia guttata. Symmetry 10(12): 679. DOI: 10.3390/sym10120679
Scott D.K. 1980. Functional aspects of the pair bond in winter in Bewick's swans (Cygnus columbianus bewickii). Behavioral Ecology and Sociobiology 7(4): 323–327. DOI: 10.1007/BF00300673
Syroechkovski E.E. 2002. Distribution and population estimates for swans in the Siberian Arctic in the 1990s. Waterbirds 25: 100–113.
Vallortigara G., Rogers L.J. 2020. A function for the bicameral mind. Cortex 124: 274–285. DOI: 10.1016/j.cortex.2019.11.018
Vallortigara G., Versace E. 2017. Laterality at the neural, cognitive, and behavioral levels. In: J. Call, G.M. Burghardt, I.M. Pepperberg, C.T. Snowdon, T. Zentall (Eds): APA Handbook of Comparative Psychology: Basic Concepts, Methods, Neural Substrate, and Behavior. Washington: American Psychological Association. P. 557–577. DOI: 10.1037/0000011-027
Vallortigara G., Cozzutti C., Tommasi L., Rogers L.J. 2001. How birds use their eyes: Opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick. Current Biology 11(1): 29–33. DOI: 10.1016/S0960-9822(00)00027-0
Vallortigara G., Chiandetti C., Sovrano V.A. 2011. Brain asymmetry (animal). Wiley Interdisciplinary Reviews: Cognitive Science 2(2): 146–157. DOI: 10.1002/wcs.100
Vangeluwe D., Rozenfeld S.B., Volkov S.V., Kazantzidis S., Morosov V.V., Zamyatin D.O., Kirtaev G.V. 2018. Migrations of Bewick's swan (Cygnus bewickii): new data on tagging the migration routes, stopovers, and wintering sites. Biology Bulletin 45(7): 706–717. DOI: 10.1134/S1062359018070178
Vince M.A. 1964. Use of the feet in feeding by the Great Tit Parus major. Ibis 106(4): 508–529. DOI: 10.1111/j.1474-919X.1964.tb03730.x
Workman L., Andrew R.J. 1986. Asymmetries of eye use in birds. Animal Behaviour 34(5): 1582–1584. DOI: 10.1016/S0003-3472(86)80235-4
Zaynagutdinova E., Karenina K., Giljov A. 2020. Lateralization of vigilance in geese: influence of flock size and distance to the source of disturbance. Biological Communications 65(3): 252–261. DOI: 10.21638/spbu03.2020.305
Zaynagutdinova E., Karenina K., Giljov A. 2021. Lateralization in monogamous pairs: wild geese prefer to keep their partner in the left hemifield except when disturbed. Current Zoology 67(4): 419–429. DOI: 10.1093/cz/zoaa074