Article

Article name ECOLOGICAL AND PHYSIOLOGICAL PARAMETERS OF MYOTIS DASYCNEME (MAMMALIA: CHIROPTERA: VESPERTILIONIDAE) IN THE URALS
Authors

Liudmila A. Kovalchuk, Dr.Sc., Chief Researcher of the Laboratory of Evolutionary Ecology in the Institute of Plant and Animal Ecology, Ural Branch of RAS (620144, Russia, Yekaterinburg, 8 Marta Street, 202); iD ORCID: https://orcid.org/0000-0003-0467-1461; e-mail: kovalchuk@ipae.uran.ru
Vladimir A. Mishchenko, Researcher of the Laboratory of Transmissible Viral Infections and Tick-Borne Encephalitis of the Federal Research Institute of Viral Infections «Virom» of the Russian Consumer Protection Agency (620030, Russia, Yekaterinburg, Letnyaya Street, 23); Research Engineer of the Laboratory of Evolutionary Ecology in the Institute of Plant and Animal Ecology, Ural Branch of RAS (620144, Russia, Yekaterinburg, 8 Marta Street, 202); iD ORCID: https://orcid.org/0000-0003-4280-283X
Liudmila V. Chernaya, PhD, Senior Researcher of the Laboratory of Evolutionary Ecology in the Institute of Plant and Animal Ecology, Ural Branch of RAS (620144, Russia, Yekaterinburg, 8 Marta Street, 202); iD ORCID: https://orcid.org/0000-0002-3386-9824; e-mail: Chernaya_LV@mail.ru
Nikolay V. Mikshevich, PhD, Associate Professor, Department of Anatomy, Physiology and Life Safety of the Ural State Pedagogical University (620017, Russia, Yekaterinburg, Kosmonavtov Avenue, 26); iD ORCID: https://orcid.org/0000-0003-2388-4278; e-mail: mikshevich@gmail.com

Reference to article

Kovalchuk L.A., Mishchenko V.A., Chernaya L.V., Mikshevich N.V. 2023. Ecological and physiological parameters of Myotis dasycneme (Mammalia: Chiroptera: Vespertilionidae) in the Urals. Nature Conservation Research 8(4): 94–111. https://dx.doi.org/10.24189/ncr.2023.034

Electronic Supplement. Photographs of Myotis dasycneme, its habitats, blood indicators from the Urals populations (Link).

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2023.034
Abstract

Understanding the evolution of bat homeostasis and the formation of an adaptive strategy of animals to climatic fluctuations and pathogens determine the need for further laboratory and modelling studies devoted to the ecology and physiology of bats. This study was aimed to assess the hematological and biochemical parameters of homeostasis of Myotis dasycneme, a protected endemic bat species of the Urals. Animals (n = 65) were caught in the zone of mass habitation of bats in the Southern Urals (Chelyabinsk Region) and the Middle Urals (Sverdlovsk Region). We used samples from M. dasycneme populations in the Ilmensky State Nature Reserve (Russia). Multivariate non-parametric analysis of variance has shown no significant sex differences in red blood parameters in bats (p > 0.05). The blood of bats was characterised by high levels of hemoglobin (167.9–187.2 g/L), hematocrit (47.2–51.5%), erythrocytes (9.6–11.5 × 1012/L), platelets (136.8–271.3 × 109/L). In the autumn-winter period of hibernation, under hypoxic load on the body and prolonged exposure to low positive and near-zero temperatures, an increased content of agranulocytes (50.6–53.6%) was noted in the blood of females and males. The spring process of awakening and exit from deep hypothermia is accompanied by the reactivity of the innate immune system in males and females (granulocytes: 53.2–54.2%). During the winter period of hypobiosis in bats, the basal metabolism increases and the concentration of glucose in the blood increases to 4.7 ± 0.5 mmol/L (p < 0.05). The absence of statistically significant sex differences in the content of glucose and triglycerides (p > 0.05) in the blood plasma of animals has been noted. This ensures metabolic processes (carbohydrate and lipid metabolism) in all seasonal periods of their annual life cycle. The amino acid fund of blood plasma of bats is represented by 22 amino acids. In the blood plasma of males and females, the fund of free amino acids decreases during the year in the following direction: summer ≥ autumn ≥ winter > spring (p < 0.05). There were no sex differences (p > 0.05) in the content of amino acid metabolic groups, namely glycogenic (GGAA), non-essential (NEAA), branched carbon chain (BCCA). A significant accumulation of metabolically active glucoplastic alanine in autumn (3.1 times) and winter (2.3 times) in the blood of females, and in autumn and winter (2.0 and 1.9 times) in males indicates its role as a low-temperature adaptogen. Under conditions of low positive temperatures, in the blood plasma of M. dasycneme, the disappearance of the essential amino acid tryptophan was observed (p < 0.05). This suggests a high demand for serotonin synthesis as one of triggers actively involved in maintaining hypothermia and hypometabolism in bats. Thus, the biochemical and immunohematological parameters, obtained in the course of the study, make it possible to expand and systematise the available information on the mechanisms of participation of the blood system in the regulatory processes in bats. They can be used for long-term monitoring in solving problems of conservation and abundance of healthy populations of bats that adapt both to seasonal modulations and biotic factors, and to stressors of zoonotic significance.

Keywords

bats, basal metabolism, free amino acids, peripheral blood parameters, protected species, seasonal variability

Artice information

Received: 27.04.2023. Revised: 17.10.2023. Accepted: 20.10.2023.

The full text of the article
References

Amorim F., Mata V.A., Beja P., Rebelo H. 2015. Effects of a drought episode on the reproductive success of European free-tailed bats (Tadarida teniotis). Mammalian Biology 80(3): 228–236. DOI: 10.1016/j.mambio.2015.01.005
Baker M.L., Schountz T., Wang L.F. 2013. Antiviral Immune Responses of Bats: A Review. Zoonoses and Public Health 60(1): 104–116. DOI: 10.1111/j.1863-2378.2012.01528.x
Bandouchova H., Zukal J., Linhart P., Berkova H., Brichta J., Kovacova V., Kubickova A., Abdelsalam E.E.E., Bartonička T., Zajíčková R., Pikula J. 2020. Low seasonal variation in greater mouse-eared bat (Myotis myotis) blood parameters. PLoS ONE 15(7): e0234784. DOI: 10.1371/journal.pone.0234784
Bolshakov V.N., Orlov O.L. 2002. Results of long-term study of bats in Smolinskaja cave Middle Urals. In: 9th European Bat Research Symposium. Le Havre: University of Le Havre. P. 47.
Bolshakov V.N., Orlov O.L., Snitko V.P. 2005. Bats of the Urals. Yekaterinburg: Akademkniga. 176 p. [In Russian]
Breed A.C., Field H.E., Smith C.S., Edmonston J., Meers J. 2010. Bats without borders: long-distance movements and implications for disease risk management. EcoHealth 7(2): 204–212. DOI: 10.1007/s10393-010-0332-z
Bruhat A., Chérasse Y., Chaveroux C., Maurin A.C., Jousse C., Fafournoux P. 2009. Amino acids as regulators of gene expression in mammals: molecular mechanisms. Biofactors 35(3): 249–257. DOI: 10.1002/biof.40
Burgin C.J., Colella J.P., Kahn P.L., Upham N.S. 2018. How many species of mammals are there?. Journal of Mammalogy 99(1): 1–14. DOI: 10.1093/jmammal/gyx147
Chereshnev V.A., Yushchkov B.G., Klimin V.G., Butorina E.V. 2007. Thrombocytopoiesis. Moscow: Medicine. 270 p. [In Russian]
Chessel D., Dufour A.B., Thioulouse J. 2004. The ade4 package-I: One-table methods. R News 4: 5–10.
Coico R., Sunshine G., Benjamini E. 2003. Immunology. A Short Course. Hoboken, NJ: John Wiley & Sons Inc. 361 p.
Davis A.K., Maney D.L., Maerz J.C. 2008. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology 22(5): 760–772. DOI: 10.1111/j.1365-2435.2008.01467.x
Dray S., Dufour A., Thioulouse J. 2022. ade4: Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences. R package version 1.7-19. Available from https://CRAN.R-project.org/package=ade4
Engel J.M., Mühling J., Weiss S., Kärcher B., Löhr T., Menges T., Little S., Hempelmann G. 2006. Relationship of taurine and other amino acids in plasma and in neutrophils of septic trauma patients. Amino Acids 30(1): 87–94. DOI: 10.1007/s00726-005-0238-1
Fenton M.B., Simmons N.B. 2015. Bats: A world of science and mystery. Oxford: University of Chicago Press. 240 p.
Flache L., Ekschmitt K., Kierdorf U., Czarnecki S., Düring R.A., Encarnação J.A. 2016. Reduction of metal exposure of Daubenton's bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair. Science of the Total Environment 547: 182–189. DOI: 10.1016/j.scitotenv.2015.12.131
Frick W.F., Baerwald E.F., Pollock J.F., Barclay R.M.R., Szymanski J.A., Weller T.J., Russell A.L., Loeb S.C., Medellin R.A., McGuire L.P. 2017. Fatalities at wind turbines may threaten population viability of a migratory bat. Biological Conservation 209: 172–177. DOI: 10.1016/j.biocon.2017.02.023
Frick W.F., Kingston T., Flanders J. 2020. A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences 1469(1): 5–25. DOI: 10.1111/nyas.14045
Garaeva S.N., Redkozubova G.V., Postolati G.V. 2009. Amino acids in a living organism. Kishinev: Printing House of the Academy of Sciences of Moldova. 552 p. [In Russian]
George D.B., Webb C.T., Farnsworth M.L., O'Shea T.J., Bowen R.A., Smith D.L., Stanley T.R., Ellison L.E., Rupprecht C.E. 2011. Host and viral ecology determine bat rabies seasonality and maintenance. Proceedings of the National Academy of Sciences of the United States of America 108(25): 10208–10213. DOI: 10.1073/pnas.1010875108
Heiker L. M., Adams R. A., Ramos C.V. 2018. Mercury bioaccumulation in two species of insectivorous bats from urban China: influence of species, age, and land use type. Archives of Environmental Contamination and Toxicology 75(4): 585–593. DOI: 10.1007/s00244-018-0547-5
Ilyin V.Yu., Smirnov D.G., Yanyaeva N.M. 2002. On the fauna, distribution and landscape confinement of bats (Chiroptera: Vespertilionidae) of the Southern Urals and adjacent territories. Plecotus et al. 5: 63–80. [In Russian]
IUCN. 2022. The IUCN Red List of Threatened Species. Version 2022-2. Available from https://www.iucnredlist.org
James L.B. 1997. Amino acid analysis: a fall-off in performance. Journal of Chromatography A 408: 291–295. DOI: 10.1016/s0021-9673(01)81812-4
Jansky L., Lehouckova M., Vybiral S., Bartunkova R., Stefl B. 1973. Effect of serotonin on thermoregulation of a hibernator (Mesocricetus auratus). Physiologia Bohemoslovaca 22(2): 115–124.
Kamyshnikov V.S. 2004. Handbook of clinical and biochemical studies and laboratory diagnostics. Moscow: MEDPress-inform. 920 p. [In Russian]
Karanova M.V. 2009a. Free amino acid composition in blood and muscle of the gobi Precottus glehni at the period of preparation and completion of hibernation. Journal of Evolutionary Biochemistry and Physiology 45(1): 67–77. DOI: 10.1134/S0022093009010062
Karanova M.V. 2009b. Glycemia and free sugar levels of the goby Perccottus glehni depending on period before the beginning and after the end of hibernation. Journal of Evolutionary Biochemistry and Physiology 45(3): 382–388. DOI: 10.1134/S0022093009030077
Karanova M.V. 2011. The effect of cold shock on the free amino acid pool of rotan pondfish Perccottus glehni (Eleotridae, Perciformes). Biology Bulletin 38(2): 116–124. DOI: 10.1134/S106235901102004X
Khaitov R.M. 2013. Immunology: structure and function of the immune system. Moscow: GEOTAR-Media 280 p. [In Russian]
Kobayashi Y. 2010. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. Journal of Leukocyte Biology 88(6): 1157–1162. DOI: 10.1189/jlb.0310149
Kohl C., Kurth A. 2014. European bats as carriers of viruses with zoonotic potential. Viruses 6(8): 3110–3128. DOI: 3390/v6083110
Kovalchuk L., Mishenko V., Chernaya L., Snitko V., Mikshevich N. 2017. Haematological parameters of pond bats (Myotis dasycneme Boie, 1825 Chiroptera: Vespertilionidae) in the Ural Mountains. Zoology and Ecology 27(2): 168–175. DOI: 10.1080/21658005.2017.1305153
Kovalchuk L.A., Mishchenko V.A., Mikshevich N.V., Chernaya L.V., Chibiryak M.V., Yastrebov A.P. 2018a. Free Amino Acid Profile in Blood Plasma of Bats (Myotis dasycneme Boie, 1825) Exposed to Low Positive and Near-Zero Temperatures. Journal of Evolutionary Biochemistry and Physiology 54(4): 281–291. DOI: 10.1134//S002209301804004Х
Kovalchuk L.A., Mishchenko V.A., Chernaya L.V., Snitko V.P. 2018b. Species-specific features of blood plasma amino acid spectrum of bats (Mammalia: Chiroptera) in the Urals. Russian Journal of Ecology 49(4): 325–331. DOI: 10.1134/S1067413618040082
Kovalchuk L.A., Mishchenko V.A., Chernaya L.V., Bolshakov V.N. 2021. Characteristic immunohematological parameters of migratory (Vespertilio murinus Linnaeus, 1758) and resident (Myotis dasycneme Boie, 1825) bat species of the ural fauna. Doklady Biological Sciences 501(1): 210–213. DOI: 10.1134/S001249662106003X
Kovalchuk L.A., Mishchenko V.A., Chernaya L.V., Snitko V.P., Bolshakov V.N. 2022. Assessment of seasonal variability of the spectrum of free amino acids in the blood plasma of the boreal bat species (Myotis dasycneme Boie, 1825) of the Ural fauna. Doklady Biochemistry and Biophysics 507(1): 268–272. DOI: 10.1134/S1607672922060060
Kovalchuk L.A., Chernaya L.V., Mishchenko V.A., Berzin D.L., Mikshevich N.V. 2023. Estimation of hematological and biochemical parameters of a representative of the amphibious fauna of the Urals: Salamandrella keyserlingii (Caudata, Amphibia). Nature Conservation Research 8(1): 34–48. DOI: 10.24189/ncr.2023.002 [In Russian]
Koyama S., Ishii K.J., Coban C., Akira S. 2008. Innate immune response to viral infection. Cytokine 43(3): 336–341. DOI: 10.1016/j.cyto.2008.07.009
Kuzyakin A.P. 1950. Bats. Moscow: Sovetskaya Nauka. 444 p. [In Russian]
López-Baucells A., Casanova L., Puig-Montserrat X., Espinal A., Páramo F., Flaquer C. 2017. Evaluating the use of Myotis daubentonii as an ecological indicator in Mediterranean riparian habitats. Ecological Indicators 74: 19–27. DOI: 10.1016/j.ecolind.2016.11.012
Luis A.D., Hayman D.T.S., O'Shea T.J., Cryan P.M., Gilbert A.T., Pulliam J.R.C., Mills J.N., Timonin M.E., Willis C.K.R., Cunningham A.A., Fooks A.R., Rupprecht C.E., Wood J.L.N., Webb C.T. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proceedings of the Royal Society B: Biological Sciences 280(1756): 20122753. DOI: 10.1098/rspb.2012.2753
Lyapunov A.N., Panyukova E.V. 2010. On the role of adults of mosquitoes (Diptera, Culicidae) in the diet of bats (Chiroptera Vespertilionidae) of the Kirov Region. Theoretical and Applied Ecology 4: 87–93. [In Russian]
Meng F., Zhu L., Huang W., Irwin D.M., Zhang S. 2016. Bats: Body mass index, forearm mass index, blood glucose levels and SLC2A2 genes for diabetes. Scientific Reports 6: 29960. DOI: 10.1038/srep29960
Mishchenko V.A., Kovalсhuk L.A., Bolshakov V.N., Chernaya L.V. 2018. Comparative Analysis of the Amino Acid Spectrum of Blood Plasma in Chiroptera (Vespertilio murinus L., 1758 and Myotis dasycneme B., 1825) in the Fauna of the Ural Mountains. Doklady Biological Sciences 481(1): 157–159. DOI: 10.1134/S0012496618040105
Moore M.S., Reichard J.D., Murtha T.D., Nabhan M.L., Pian R.E., Ferreira J.S., Kunz T.H. 2013. Hibernating little brown myotis (Myotis lucifugus) show variable immunological responses to white-nose syndrome. PloS One 8(3): e58976. DOI: 10.1371/journal.pone.0058976
O'Shea T.J., Cryan P.M., Cunningham A.A., Fooks A.R., Hayman D.T.S., Luis A.D., Peel A.J., Plowright R.K., Wood J.L.N. 2014. Bat flight and zoonotic viruses. Emerging Infectious Diseases 20(5): 741–745. DOI: 10.3201/eid2005.130539
Oksanen J., Simpson G.L., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Solymos P., Stevens M.H.H., Szoecs E., Wagner H., Barbour M., Bedward M., Bolker B., Borcard D., Carvalho G., Chirico M., Caceres M., Durand S., Evangelista H.B.A., FitzJohn R., Friendly M., Furneaux B., Hannigan G., Hill M.O., Lahti L., McGlinn D., Ouellette M.H., Cunha E.R., Smith T., et al. 2020. vegan: Community Ecology Package. R package. version 2.6-4. Available from https://CRAN.R-project.org/package=vegan
Orlova M.V., Orlov O.L., Kshnyasev I.A. 2012. Changes in the abundance of parasitic gamasid mite Macronyssus corethroproctus (Oudemans, 1902) during the overwintering period of its host, the pond bat Myotis dasycneme (Boie, 1825) // Russian Journal of Ecology. Vol. 43(4). P. 328–332. DOI: 10.1134/S1067413612040108
Ozernyuk N.D. 2003. Phenomenology and mechanisms of adaptation processes. Moscow: Moscow State University. 215 p. [In Russian]
Park K.J. 2015. Mitigating the impacts of agriculture on biodiversity: bats and their potential role as bioindicators. Mammalian Biology 80(3): 191–204. DOI: 10.1016/j.mambio.2014.10.004
Pervushina E.M., Zamshina G.A., Nikolaeva N.V., Fedyakina M.A. 2011. Trophic relalions of insectivorous bats in the south of the Middle Urals. Bulletin of Udmurt University. Series Biology. Earth Sciences 3: 65–73. [In Russian]
Piraccini R. 2016. Myotis dasycneme. In: The IUCN Red List of Threatened Species 2016: e.T14127A22055164. Available from https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T14127A22055164.en
R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.R-project.org/
Rasmussen D.D., Ishizuka B., Quigley M.E., Yen S.S. 1983. Effects of Tyrosine and Tryptophan Ingestion on Plasma Catecholamine and 3,4-Dihydroxyphenylacetic Acid Concentrations. Journal of Clinical Endocrinology and Metabolism 57(4): 760–763. DOI: 10.1210/jcem-57-4-760
Red Data Book of the Middle Urals (Sverdlovsk and Perm Regions): Rare and endangered species of animals and plants. Yekaterinburg: Publishing House of the Ural University, 1996. 279 p. [In Russian]
Ruiz S.R., Eeva T., Kanerva M., Blomberg A., Lilley T.M. 2019. Metal and metalloid exposure and oxidative status in free-living individuals of Myotis daubentonii. Ecotoxicology and Environmental Safety 169: 93–102. DOI: 10.1016/j.ecoenv.2018.10.083
Russo D., Salinas-Ramos V.B., Cistrone L., Smeraldo S., Bosso L., Ancillotto L. 2021. Do We Need to Use Bats as Bioindicators?. Biology 10(8): 693. DOI: 10.3390/biology10080693
Schountz T. 2014. Immunology of bats and their viruses: challenges and opportunities. Viruses 6(12): 4880–4901. DOI: 10.3390/v6124880
Severin E.S. (Ed.). 2004. Biochemistry. Moscow: GEOTAR-Media. 784 p. [In Russian]
Shakhmatov I.I., Lycheva N.A., Kiselev V.I., Vdovin V.M. 2014. Contribution stressors of different nature in the formation of a hemostatic response reaction of the organism under the influence of general hypothermia. Fundamental Research 7(1): 106–110. [In Russian]
Sherwin H.A., Montgomery I., Lundy M.G. 2013. The impact and implications of climate change for bats. Mammal Review 43(3): 171–182. DOI: 10.1111/j.1365-2907.2012.00214.x
Shitikov V.K., Rosenberg G.S. 2014. Randomization and bootstrap: statistical analysis in biology and ecology using R. Tolyatti: Cassandra. 314 p. [In Russian]
Simmons N.B., Cirranello A.L. 2021. Bat Species of the World: A Taxonomic and Geographic Database. Available from https://batnames.org
Slonim A.D. (Ed.). 1979. Ecological Animal Physiology. Part. 1. General ecological physiology and physiology of adaptations. Leningrad: Nauka. 440 p. [In Russian]
Snitko V.P. 2000. Proposed measures for monitoring bats in the Urals Protected Areas. In: Coordination of ecomonitoring in the Urals Protected Areas. Yekaterinburg. P. 239. [In Russian]
Snitko V.P. 2001. Bats (Chiroptera) of the Ilmensky State Nature Reserve. Plecotus et al. 4: 69–74. [In Russian]
Storey K.B. 2012. Biochemical regulation of carbohydrate metabolism in hibernating bats. In: T. Ruf, C. Bieber, W. Arnold, E. Millesi (Eds.): Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations. Chapter 36. Berlin: Springer. P. 411–421. DOI: 10.1007/978-3-642-28678-0_36
Strelkov P.P. 1999. Sex ratio in the breeding season in adults of migratory bat species (Chiroptera, Vespertilionidae) of Eastern Europe and adjacent territories. Zoologicheskii Zhurnal 78(12): 1441–1454. [In Russian]
Tilman D., Clark M., Williams D.R., Kimmel K., Polasky S., Packer C. 2017. Future threats to biodiversity and pathways to their prevention. Nature 546(7656): 73–81. DOI: 10.1038/nature22900
Voigt C.C., Kingston T. 2016. Bats in the Anthropocene: Conservation of bats in a Changing World. Cham: Springer. 606 p.
Wang P., Walter R.D., Bhat B.G., Florant G.L., Coleman R.A. 1997. Seasonal changes in enzymes of lipogenesis and triacylglycerol synthesis in the golden-mantled ground squirrel (Spermophilus lateralis). Comparative Biochemistry and Physiology B: Biochemistry and Molecular Biology 118(2): 261–267. DOI: 10.1016/s0305-0491(97)00102-8
Wilkinson G.S., Adams D.M. 2019. Recurrent evolution of extreme longevity in bats. Biology Letters 15(4): 20180860. DOI: 10.1098/rsbl.2018.0860
Wray A.K., Jusino M.A., Banik M.T., Palmer J.M., Kaarakka H., White J.P., Lindner D.L., Gratton C., Peery M.Z. 2018. Incidence and taxonomic richness of mosquitoes in the diets of little brown and big brown bats. Journal of Mammalogy 99(3): 668–674. DOI: 10.1093/jmammal/gyy044
Wu G. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1): 1–17. DOI: 10.1007/s00726-009-0269-0
Yakimenko M.A., Popova N.K. 1976. Influence of 5-hydroxytryptophan on contractile thermogenesis. Bulletin of Experimental Biology and Medicine 81(2): 230–231.
Yarri D. 2005. The Ethics of animal experimentation. Oxford: Oxford University Press. 240 p.
Zimmerman L.M., Bowden R.M., Vogel L.A. 2014. A vertebrate cytokine primer for eco-immunologists. Functional Ecology 28(5): 1061–1073. DOI: 10.1111/1365-2435.12273
Zukal J., Pikula J., Bandouchova H. 2015. Bats as bioindicators of heavy metal pollution: history and prospect. Mammalian Biology 80(3): 220–227. DOI: 10.1016/j.mambio.2015.01.001