Dmitry G. Ivanov, Junior Researcher of the A.N. Severtsov Institute of Ecology and Evolution of the RAS (119071, Russia, Moscow, Leninskiy prospect, 33); iD ORCID:; e-mail:
Julia A. Kurbatova, PhD, Head of the V.N. Sukachev laboratory of biogecenology of the A.N. Severtsov Institute of Ecology and Evolution of the RAS (119071, Russia, Moscow, Leninskiy prospect, 33); iD ORCID:; e-mail:

Reference to article

Ivanov D.G., Kurbatova J.A. 2023. Dynamics of Picea abies mortality and CO2 and CH4 fluxes from spruce trees decomposition in the southwest of the Valdai Upland, Russia. Nature Conservation Research 8(2): 33–43.

Section Research articles

A mass decline of Picea abies (hereinafter – spruce), often associated with outbreaks of Ips typographus, is one of the main reasons for the reduction of spruce forests. In turn, dry and fallen trees can be both stock and source of greenhouse gases at various stages of decomposition. In our study, using an unmanned aerial vehicle, we evaluated the dynamics of spruce decline in two forest types in the southwest of the Valdai Upland (Central Forest State Nature Reserve, Russia), namely Sphagnum-bilberry forests and nemoral spruce forests. It was found that the rate of decline in Sphagnum-bilberry spruce forest was much higher than in nemoral spruce forest. By the fourth year after a windfall on 0.13 km2, 913 spruce individuals had withered in Sphagnum-bilberry forest and 66 ones in the nemoral spruce forest. Based on direct measurements of greenhouse gas fluxes by chamber method on dead trunks and coarse woody debris, it was found that in relative values the highest amount of CO2 is emitted by coarse woody debris of the decay classes 3–4 (800–1800 mg CO2 × m-2 × h-1). Deadwood and coarse woody debris from the first decay classes are assumed to be a source of CH4 (0.0008–0.0070 mg CO2 × m-2 × h-1), and from classes 3–5 they are a stock (from -0.0070 mg CO2 × m-2 × h-1 to -0.0009 mg CO2 × m-2 × h-1). When converted to the total surface areas of deadwood and coarse woody debris of the study sites, it was found that coarse woody debris of the decay classes 3–5 (2.3–13.6 kg CO2 × h-1) made the highest contribution to the integral CO2 emission, and deadwood (67 mg CH4 × h-1) made the highest contribution to the CH4 emission. Significant differences in greenhouse gas fluxes were found both between deadwood and decay classes of coarse woody debris, and between fluxes from deadwood and coarse woody debris of individual decay classes in various forest types. The results have shown the importance of considering deadwood and all available decay classes of coarse woody debris when estimating greenhouse gas fluxes from dead timber and the contribution of debris to the carbon cycle in forest ecosystems.


carbon dioxide, chamber method, coarse woody debris, methane, spruce forest, unmanned aerial vehicle

Artice information

Received: 23.09.2022. Revised: 22.12.2022. Accepted: 09.02.2023.

The full text of the article

Abrazhko V.I. 1988. Water stress in the communities of spruce forests with excess moisture. Botanicheskii Zhurnal 73(5): 709–715. [In Russian]
Abrazhko V.I. 1994. About water regime of spruce stands in a drought. Lesovedenie 6: 36–45. [In Russian]
Aleksandrova V.D., Yurkovskaya T.K. 1989. Geobotanical zoning of Non-black soil area of the European part of the RSFSR. Leningrad: Publisher of AS USSR. 64 p. [In Russian]
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.H., Allard G., Running S.W., Semerci A., Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4): 660–684. DOI: 10.1016/j.foreco.2009.09.001
Bobrov A.A., Goncharuk N.Yu., Zheltukhina V.I., Korobov E.D., Minaeva T.Yu., Menshikh T.B., Starodubtseva O.A., Trofimov S.Yu. 1999. Processes in bogging spruce forests. In: Succession processes in the Russian state nature reserves and the conservation of biological diversity. St. Petersburg. P. 361–380. [In Russian]
Bond‐Lamberty B.P., Wang C., Gower S.T. 2002. Annual carbon flux from woody debris for a boreal black spruce fire chronosequence. Journal of Geophysical Research: Atmospheres 107(D23): 1–10. DOI: 10.1029/2001JD000839
Burova L.G. 1986. Ecology of macromycete fungi. Moscow: Nauka. 223 p. [In Russian]
Carmichael M.J., Helton A.M., White J.C., Smith W.K. 2018. Standing dead trees are a conduit for the atmospheric flux of CH4 and CO2 from wetlands. Wetlands 38(1): 133–143. DOI: 10.1007/s13157-017-0963-8
Gessler A., Cailleret M., Joseph J., Schönbeck L., Schaub M., Lehmann M., Treydte K., Rigling A., Timofeeva G., Saurer M. 2018. Drought induced tree mortality – a tree-ring isotope based conceptual model to assess mechanisms and predispositions. New Phytologist 219(2): 485–490. DOI: 10.1111/nph.15154
Gitarskiy M.L., Zamolodchikov D.G., Mukhin V.A., Grabar V.A., Diyarova D.K., Ivashchenko A.I. 2017. Carbon fluxes from coarse woody debris in southern taiga forests of the Valdai Upland. Russian Journal of Ecology 48(6): 539–544. DOI: 10.1134/S1067413617060030
Grabovsky V.I., Zamolodchikov D.G. 2012. Models of estimating slash reserves according to data obtained on transects. Lesovedenie 2: 66–73. [In Russian]
Hagemann U., Moroni M.T., Gleißner J., Makeschin F. 2010. Disturbance history influences downed woody debris and soil respiration. Forest Ecology and Management 260(10): 1762–1772. DOI: 10.1016/j.foreco.2010.08.018
Harmon M.E., Bond‐Lamberty B., Tang J., Vargas R. 2011. Heterotrophic respiration in disturbed forests: A review with examples from North America. Journal of Geophysical Research: Biogeosciences 116(G4): 1–17. DOI: 10.1029/2010JG001495
Ivanov D.G., Avilov V.K., Kurbatova Y.A. 2017. CO2 fluxes at south taiga bog in the European part of Russia in summer. Contemporary Problems of Ecology 10(2): 97–104. DOI: 10.1134/S1995425517020056
Ivanov A.V., Braun M., Zamolodchikov D.G., Loshakov S.Y., Pototskii O.V. 2018. Carbon emission from the surface of coarse woody debris in Korean pine forests of southern Primorye. Russian Journal of Ecology 49(4): 306–311. DOI: 10.1134/S1067413618040070
Johnson A.H., Friedland A.J., Dushoff J.G. 1986. Recent and historic red spruce mortality: Evidence of climatic influence. Water, Air, and Soil Pollution 30(1): 319–330. DOI: 10.1007/BF00305203
Kahl T., Baber K., Otto P., Wirth C., Bauhus J. 2015. Drivers of CO2 emission rates from dead wood logs of 13 tree species in the initial decomposition phase. Forests 6(7): 2484–2504. DOI: 10.3390/f6072484
Kapitsa E.A., Shorokhova E.V., Kuznetsov A.A., Levchenko I.A., Matveevskaya D.N., Omelchenko A.A. 2010. Comparison of methods for determining the carbon flux as a result of decay of tree stand on the example of indigenous dark coniferous forests in the Yugyd Va National Park. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii 193: 95–106. [In Russian]
Karelin D.V., Zamolodchikov D.G., Shilkin A.V., Kumanyaev A.S., Popov S.Y., Telnova N.O., Gitarskiy M.L. 2020. The Long-Term Effect of Ongoing Spruce Decay on Carbon Exchange in Taiga Forests. Doklady Earth Sciences 493(1): 558–561. DOI: 10.1134/S1028334X20070089
Karelin D.V., Zamolodchikov D.G., Shilkin A.V., Popov S.Y., Kumanyaev A.S., Lopes de Gerenyu V.O., Telnova N.O., Gitarskiy M.L. 2021. The effect of tree mortality on CO2 fluxes in an old-growth spruce forest. European Journal of Forest Research 140(2): 287–305. DOI: 10.1007/s10342-020-01330-3
Kharuk V.I., Im S.T., Dvinskaya M.L., Golukov A.S., Ranson K.J. 2015. Climate-induced mortality of spruce stands in Belarus. Environmental Research Letters 10(12): 125006. DOI: 10.1088/1748-9326/10/12/125006
Knohl A., Kolle O., Minayeva T.Y., Milyukova I.M., Vygodskaya N.N., Foken T., Schulze E.D. 2002. Carbon dioxide exchange of a Russian boreal forest after disturbance by wind throw. Global Change Biology 8(3): 231–246. DOI: 10.1046/j.1365-2486.2002.00475.x
Kudeyarov V.N., Zavarzin G.A., Blagodatskiy S.A., Borisov A.V., Voronin P.Yu., Demkin V.A., Demkina T.S., Evdokimov I.V., Zamolodchikov D.G., Karelin D.V., Komarov A.S., Kurganova I.N., Larionova A.A., Lopes de Gerenyu V.O., Utkin A.I., Chertov O.G. 2007. Pools and fluxes of carbon in terrestrial ecosystems of Russia. Moscow: Nauka. 315 p. [In Russian]
Lindroth A., Lagergren F., Grelle A., Klemedtsson L., Langvall O.L., Weslien P.E.R., Tuulik J. 2009. Storms can cause Europe-wide reduction in forest carbon sink. Global Change Biology 15(2): 346–355. DOI: 10.1111/j.1365-2486.2008.01719.x
Malakhova E.G., Lyamtsev N.I. 2014. Extent and structure of Moscow region spruce forest dieback in 2010–2012. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii 207: 193–201. [In Russian]
Mamai A.V., Moshkina E.V., Kurganova I.N., Shorohova E.V., Romashkin I.V., Lopes de Gerenyu V.O. 2018. Partitioning of CO2 fluxes from coarse woody debris: adaptation of the component integration method. Baltic forestry 24(2): 249–260.
Mamkin V.V., Kurbatova J.A., Avilov V.K., Ivanov D.G., Kuricheva O.A., Varlagin A.V., Olchev A.V. 2019. Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the Southern Taiga. Agricultural and Forest Meteorology 265: 252–268. DOI: 10.1016/j.agrformet.2018.11.018
Molchanov A.G., Тatarinov F.А., Kurbatova Y.А. 2011. Emission of CO2 by stems of live trees, dead wood, and slash in spruce forests in the southwestern Valdai upland. Lesovedenie 3: 14–25. [In Russian]
Mukhin V.A., Voronin P.Yu. 2007. Mycogenic decomposition of wood and carbon emission in forest ecosystems. Russian Journal of Ecology 38(1): 22–26. DOI: 10.1134/S1067413607010043
Mukhin V.A., Voronin P.Yu., Sukhareva A.V., Kuznetsov V.V. 2010. Wood decomposition by fungi in the boreal-humid forest zone under the conditions of climate warming. Doklady Biological Sciences 431(1): 110–112. DOI: 10.1134/S0012496610020110
Mukhortova L., Pashenova N., Meteleva M., Krivobokov L., Guggenberger G. 2021. Temperature sensitivity of CO2 and CH4 fluxes from coarse woody debris in northern boreal forests. Forests 12(5): 624. DOI: 10.3390/f12050624
Noh N.J., Shannon J.P., Bolton N.W., Davis J.C., Van Grinsven M.J., Pypker T.G., Kolka R.K., Wagenbrenner J.W. 2019. Temperature responses of carbon dioxide fluxes from coarse dead wood in a black ash wetland. Wetlands Ecology and Management 27(1): 157–170. DOI: 10.1007/s11273-018-9649-0
Økland B., Nikolov C., Krokene P., Vakula J. 2016. Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. Forest Ecology and Management 363: 63–73. DOI: 10.1016/j.foreco.2015.12.007
Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L., Shvidenko A., Lewis S.L., Canadell J.G., Ciais P., Jackson R.B., Pacala S.W., McGuire A.D., Piao S., Rautiainen A., Sitch S., Hayes D. 2011. A large and persistent carbon sink in the world's forests. Science 333(6045): 988–993. DOI: 10.1126/science.1201609
Pugachevsky A.V. 1992. Spruce cenopopulations: structure, dynamics and regulation of factors. Minsk: Nauka i tekhnika. 204 p. [In Russian]
Pukinskaya M.Y. 2016. The group spruce decline in forests of south taiga. Botanicheskii Zhurnal 101(6): 650–671. [In Russian]
Rinne‐Garmston K.T., Peltoniemi K., Chen J., Peltoniemi M., Fritze H., Mäkipää R. 2019. Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest. Global Change Biology 25(5): 1852–1867. DOI: 10.1111/gcb.14594
Safonov S.S., Karelin D.V., Grabar V.A., Latyshev B.A., Grabovskiy V.I., Uvarova N.E., Zamolodchikov D.G., Korotkov V.N., Gytarsky M.L. 2012. The emission of carbon from the decomposition of woody debris in the southern taiga spruce forest. Lesovedenie 5: 44–49. [In Russian]
Schmid A.V., Vogel C.S., Liebman E., Curtis P.S., Gough C.M. 2016. Coarse woody debris and the carbon balance of a moderately disturbed forest. Forest Ecology and Management 361: 38–45. DOI: 10.1016/j.foreco.2015.11.001
Sippel S., Reichstein M., Ma X., Mahecha M.D., Lange H., Flach M., Frank D. 2018. Drought, heat, and the carbon cycle: a review. Current Climate Change Reports 4(3): 266–286. DOI: 10.1007/s40641-018-0103-4
Solberg S. 2004. Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. Forest Pathology 34(2): 93–104. DOI: 10.1111/j.1439-0329.2004.00351.x
Tarasov M.E. 2002. Methodological approaches to assessing the rate of decomposition of wood debris. Lesovedenie 5: 32–38. [In Russian]
Ulanova N.G. 2000. The effects of windthrow on forests at different spatial scales: a review. Forest Ecology and Management 135(1–3): 155–167. DOI: 10.1016/S0378-1127(00)00307-8
Vanderhoof M., Williams C., Pasay M., Ghimire B. 2013. Controls on the rate of CO2 emission from woody debris in clearcut and coniferous forest environments. Biogeochemistry 114(1): 299–311. DOI: 10.1007/s10533-012-9810-4
Wang C., Bond-Lamberty B., Gower S.T. 2002. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132(3): 374–381. DOI: 10.1007/s00442-002-0987-4
Warner D.L., Villarreal S., McWilliams K., Inamdar S., Vargas R. 2017. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems 20(6): 1205–1216. DOI: 10.1007/s10021-016-0106-8
Wermelinger B. 2004. Ecology and management of the spruce bark beetle Ips typographus – a review of recent research. Forest Ecology and Management 202(1–3): 67–82. DOI: 10.1016/j.foreco.2004.07.018
Wichmann L., Ravn H.P. 2001. The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. Forest Ecology and Management 148(1–3): 31–39. DOI: 10.1016/S0378-1127(00)00477-1
Young D.J., Stevens J.T., Earles J.M., Moore J., Ellis A., Jirka A.L., Latimer A.M. 2017. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters 20(1): 78–86. DOI: 10.1111/ele.12711
Zhigunov A.V., Semakova T.A., Shabunin D.A. 2007. The massive drying forests in Northwest Russia. In: Forest biological research in the Northwestern taiga zone of Russia: results and prospects. Petrozavodsk. P. 42–52. [In Russian]
Zolotarev S.A. 1950. Waterlogging and drying under some spruce forest of basalt plateau of southern Primorye. Proceedings of the Far Eastern Institute for Forestry Research 2: 81–103. [In Russian]