Article

Article name TREE ATTRIBUTE ASSESSMENT IN URBAN GREENWOOD USING GROUND-BASED LIDAR AND MULTISEASONAL AERIAL PHOTOGRAPHY DATA
Authors

Aleksey V. Kabonen, PhD Student, Department of Technology and Management of Forest Industry Complex, Institute of Forestry, Mining and Construction Sciences, Petrozavodsk State University (185910, Russia, Republic of Karelia, Petrozavodsk, Lenina Avenue, 33); iD ORCID: https://orcid.org/0000-0002-1717-3085; e-mail: alexkabonen@mail.ru
Natalya V. Ivanova, PhD, Senior Researcher, Institute of Mathematical Problems of Biology RAS – the Branch of the Keldysh Institute of Applied Mathematics of the RAS (142290, Russia, Moscow Region, Pushchino, Professor Vitkevich Street, 1); iD ORCID: https://orcid.org/0000-0003-4199-5924; e-mail: Natalya.dryomys@gmail.com

Reference to article

Kabonen A.V., Ivanova N.V. 2023. Tree attribute assessment in urban greenwood using ground-based LiDAR and multiseasonal aerial photography data. Nature Conservation Research 8(1): 64–83. https://dx.doi.org/10.24189/ncr.2023.005

Electronic Supplement. List of woody plant species in the collection of the arboretum of the Botanical Garden of the Petrozavodsk State University, Republic of Karelia, Russia (Link).


Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2023.005
Abstract

Advances in LiDAR and unmanned aerial vehicle technology have made high-resolution data available, which can be used for individual tree detection and assessing tree attributes. The accuracy of these assessments is still not clear for stands with high tree species diversity as well as leaf-off and leaf-on conditions. The aim of this study was to assess the quality of tree top detection and individual tree heights extracted from photogrammetric point clouds and canopy height models as well as ground-based LiDAR clouds in mixed and coniferous forest stands depending on the phenological stage. The study has been carried out in the Botanical Garden of the Petrozavodsk State University (Republic of Karelia, Russia). Four flight missions (in 2019–2021) using Phantom 4 Pro quadcopter were conducted in the arboretum (> 200 tree species) during periods of leafless, leaf biomass growth, full foliage and autumn leaf colouration. A single ground-based laser scanning was performed using a Leica BLK 360. Multiseasonal ultra-high resolution orthophoto mosaics (1.1–2.8 cm/pixel), photogrammetric point clouds (average density is 4200 points/m2), as well as LiDAR clouds (11 600 points/m2) were obtained. Further analysis was performed on three sites differing in tree species composition, tree density and site area. Tree tops were automatically detected from photogrammetric point clouds and their heights were estimated using R environment software. We found that most of the trees (78.9%) were correctly detected by algorithms based on photogrammetric data collected in periods of full foliage and autumn colouration. We also found that the number of false positive (FP) and false negative (FN) cases increased with decreasing in green biomass on deciduous trees. Compared with an average value, tree detection quality increased by 9.4% for coniferous trees with cone-shaped crowns (Abies sibirica, A. balsamea, A. fraseri, Picea abies, P. pungens, P. omorika, Pseudotsuga menziesii, Larix sibirica) regardless of the tree density, and tree detection quality decreased by 10% for coniferous trees with an ellipsoidal-shaped crowns (e.g. Thuja occidentalis, genus Pinus) or in cases for broad-leaved trees with high tree density. The lowest value of tree detection quality (F = 0.49) was found for the leafless period. High values (F = 0.84) obtained for periods of full foliage and autumn colouration indicates that tree detection quality was well in general. For the biomass growth period, this value (F = 0.69) also indicates a high quality of tree detection results. We also found that tree heights estimated using photogrammetric data well matched with tree heights measured on LiDAR clouds (R2 = 0.99). The highest accuracy was obtained for coniferous trees with cone-shaped crowns. We also estimated the height increments of different tree species between 2019 and 2021 based on photogrammetric point clouds. The highest annual height increment was obtained for Pinus sibirica (52 cm), and the lowest for Pseudotsuga menziesii (32 cm). Overall, our results have shown the potential to use photogrammetric and LiDAR data for tree mapping and estimating tree attributes in multi-species forest stands of arboretums or urban parks, as well as in natural forests.

Keywords

arboretum, botanical garden, laser scanning, lidR, phenology, photogrammetry, unmanned aerial vehicle

Artice information

Received: 04.04.2022. Revised: 26.09.2022. Accepted: 04.10.2022.

The full text of the article
References

Agisoft LLC. 2019. Agisoft Metashape (Version 1.5). Software. Available from https://www.agisoft.com/
Aleshko R.A., Alekseeva A.A., Shoshina K.V., Bogdanov A.P., Guriev A.T. 2017. Development of the methodology to update the information on a forest area using satellite imagery and small UAVs. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 14(5): 87–99. DOI: 10.21046/2070-7401-2017-14-5-87-99 [In Russian]
Alonzo M., Andersen H.E., Morton D.C., Cook B.D. 2018. Quantifying Boreal Forest Structure and Composition Using UAV Structure from Motion. Forests 9(3): 119. DOI: 10.3390/f9030119
Bennett G., Hardy A., Bunting P., Morgan P., Fricker A. 2020. A Transferable and Effective Method for Monitoring Continuous Cover Forestry at the Individual Tree Level Using UAVs. Remote Sensing 12(13): 2115. DOI: 10.3390/rs12132115
Birdal A.C., Avdan U., Türk T. 2017. Estimating tree heights with images from an unmanned aerial vehicle. Geomatics, Natural Hazards and Risk 8(2): 1144–1156. DOI: 10.1080/19475705.2017.1300608
Blaskow R., Lindstaedt M., Schneider D., Kersten T. 2018. Untersuchungen zum Genauigkeitspotential des terrestrischen Laserscanners Leica BLK360. In: T. Luhmann, C. Schumacher (Eds.): Photogrammetrie, Laserscanning, Optische 3D-Messtechnik – Beiträge der Oldenburger 3D-Tage 2018. Berlin/Offenbach: VDE Verlag GmbH. P. 284–296.
Brieger F., Herzschuh U., Pestryakova L.A., Bookhagen B., Zakharov E.S., Kruse S. 2019. Advances in the derivation of northeast siberian forest metrics using high-resolution UAV-based photogrammetric point clouds. Remote Sensing 11(12): 1447. DOI: 10.3390/rs11121447
Budilovskaia A., Shao Y. 2021. Study on Russian Botanical Garden construction characteristics – on the example of Russia Northern-West botanical gardens. IOP Conference Series: Earth and Environmental Science 787: 012073. DOI: 10.1088/1755-1315/787/1/012073
Burt A.P. 2017. New 3D-measurements of forest structure. PhD Thesis. London: University College. 288 p.
Dalponte M., Coomes D.A. 2016. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods in Ecology and Evolution 7(10): 1236–1245. DOI: 10.1111/2041-210X.12575
Dempewolf J., Nagol J., Hein S., Thiel C., Zimmermann R. 2017. Measurement of within-season tree height growth in a mixed forest stand using UAV imagery. Forests 8: 231. DOI: 10.3390/f8070231
Goutte C., Gaussier E. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: D.E. Losada, J.M. Fernández-Luna (Eds.): Advances in Information Retrieval. ECIR 2005. Lecture Notes in Computer Science. Vol. 3408. Berlin; Heidelberg: Springer. P. 345–359. DOI: 10.1007/978-3-540-31865-1_25
Gromtsev A.N., Kitaev C.P., Krutov V.I., Kuznetsov O.L., Lindkholm T., Yakovlev Ye.B. (Eds.). 2003. Biota diversity of Karelia: formation conditions, communities, species. Petrozavodsk: Karelian Scientific Center of RAS. 262 p. [In Russian]
Hudak A.T., Haren A.T., Crookston N.L., Liebermann R.J., Ohmann J.L. 2014. Imputing forest structure attributes from stand inventory and remotely sensed data in western Oregon, USA. Forest Science 60(2): 253–269. DOI: 10.5849/forsci.12-101
Hyyppä J., Hyyppä H., Leckie D., Gougeon F., Yu X., Maltamo M. 2008. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing 29(5): 1339–1366. DOI: 10.1080/01431160701736489
Ivanova N.V., Shashkov M.P., Shanin V.N. 2021. Obtaining tree stand attributes from unmanned aerial vehicle (UAV) data: the case of mixed forests. Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya 54: 158–175. DOI: 10.17223/19988591/54/8 [In Russian]
Jackson M., Portillo-Quintero C., Cox R., Ritchie G., Johnson M., Humagain K., Subedi M.R. 2020. Season, classifier, and spatial resolution impact honey mesquite and yellow bluestem detection using an Unmanned Aerial System. Rangeland Ecology and Management 73(5): 658–672. DOI: 10.1016/j.rama.2020.06.010
Kabonen A.V., Andryusenko V.V. 2018. Web-Geoinformation System of the Botanic Garden of the Petrozavodsk State University. Hortus Botanicus 13: 356–360. DOI: 10.15393/j4.art.2018.5382 [In Russian]
Kabonen A.V. 2022. Orthophoto mosaics of the Arboretum of Botanical Garden of Petrozavodsk State University. Zenodo. DOI: 10.5281/zenodo.6370597
Kishchenko I.T. 2014. Growth and development of introduced deciduous tree species under conditions of the Karelia. Petrozavodsk: Petrozavodsk State University. 161 p. [In Russian]
Kolarik N., Ellis G., Gaughan A., Stevens R.F. 2019. Describing seasonal differences in tree crown delineation using multispectral UAS data and structure from motion. Remote Sensing Letters 10(9): 864–873. DOI: 10.1080/2150704X.2019.1629708
Kolarik N.E., Gaughan A.E., Stevens F.R., Pricope N.G., Woodward K., Cassidy L., Salerno J., Hartter J. 2020. A multi-plot assessment of vegetation structure using a micro-unmanned aerial system (UAS) in a semi-arid savanna environment. ISPRS Journal of Photogrammetry and Remote Sensing 164: 84–96. DOI: 10.1016/j.isprsjprs.2020.04.011
Lantratova A.S., Markovskaya E.F., Obuhova E.L., Platonova E.A., Prokhorov A.A. 2001. 50-year history of the Botanical Garden of Petrozavodsk University Botanic Garden. Hortus Botanicus 1: 9–18. [In Russian]
Larjavaara M., Muller-Landau H.C. 2013. Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution 4(9): 793–801. DOI: 10.1111/2041-210X.12071
Lau A., Martius C., Bartholomeus H., Shenkin A., Jackson T., Malhi Ya., Herold M., Bentley L.P. 2019. Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. Forest Ecology and Management 439: 132–145. DOI: 10.1016/j.foreco.2019.02.019
Li W., Guo Q., Jakubowski M.K., Kelly M. 2012. A new method for segmenting individual trees from the LiDAR point cloud. Photogrammetric Engineering and Remote Sensing 78(1): 75–84. DOI: 10.14358/PERS.78.1.75
Liang X., Kankare V., Hyyppä J., Wang Y., Kukko A., Haggrén H., Yu X., Kaartinen H., Jaakkola A., Guan F., Holopainen M., Vastaranta M. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 115: 63–77. DOI: 10.1016/j.isprsjprs.2016.01.006
Lin Y., Hyyppä J., Kukko A., Jaakkola A., Kaartinen H. 2012. Tree height growth measurement with single-scan airborne, static terrestrial and mobile laser scanning. Sensors 12(9): 12798–12813. DOI: 10.3390/s120912798
Lisein J., Pierrot-Deseilligny M., Bonnet S., Lejeune P. 2013. A photogrammetric workflow for the creation of a forest canopy height model from small Unmanned Aerial System imagery. Forests 4: 922–944. DOI: 10.3390/f4040922
Liu H., Wu C. 2020. Developing a scene-based triangulated irregular network (TIN) technique for individual tree crown reconstruction with LiDAR data. Forests 11: 28. DOI: 10.3390/f11010028
Luhmann T., Chizhova M., Gorkovchuk D., Hastedt H., Chachava N., Lekveishvili N. 2019. Combination of terrestrial laserscanning, UAV and close-range photogrammetry for 3D reconstruction of complex churches in Georgia. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42-2/W11: 753–761. DOI: 10.5194/isprs-archives-XLII-2-W11-753-2019
Medvedev A.A., Telnova N.O., Kudikov A.V. 2019. Highly detailed remote sensing monitoring of tree overgrowth on abandoned agricultural lands. Forest Science Issues 2(3). DOI: 10.31509/2658-607x-2019-2-3-1-12 [In Russian]
Meier U. (Ed.). 2018. Growth stages of mono- and dicotyledonous plants: BBCH Monograph. Quedlinburg: Open Agrar Repositorium. 204 p.
Meier U., Bleiholder H., Buhr L., Feller C., Hack H., Heß M., Lancashire P.D., Schnock U., Stauß R., van den Boom T., Weber E., Zwerger P. 2009. The BBCH system to coding the phenological growth stages of plants – history and publications. Journal für Kulturpflanzen 61(2): 41–52. DOI: 10.5073/JfK.2009.02.01
Miller E., Dandois J.P., Detto M., Hall J.S. 2017. Drones as a tool for monoculture plantation assessment in the steepland tropics. Forests 8(5): 168. DOI: 10.3390/f8050168
Minin A.A., Ananin A.A., Buyvolov Yu.A., Larin E.G., Lebedev P.A., Polikarpova N.V., Prokosheva I.V., Rudenko M.I., Sapelnikova I.I., Fedotova V.G., Shuyskaya E.A., Yakovleva M.V., Yantser O.V. 2020. Recommendations to unify phenological observations in Russia. Nature Conservation Research 5(4): 89–110. DOI: 10.24189/ncr.2020.060 [In Russian]
Nisametdinov N.F., Moiseev P.A., Vorobiev I.B. 2021. Laser Scanning and Aerial Photography with UAV in Studying the Structure of Forest-Tundra Stands in the Khibiny Mountains. Lesnoy Zhurnal 4: 9–22. DOI: 10.37482/0536-1036-2021-4-9-22 [In Russian]
Nuijten R.J.G., Coops N.C., Goodbody T.R.H., Pelletier G. 2019. Examining the Multi-Seasonal Consistency of Individual Tree Segmentation on Deciduous Stands Using Digital Aerial Photogrammetry (DAP) and Unmanned Aerial Systems (UAS). Remote Sensing 11(7): 739. DOI: 10.3390/rs11070739
Onishi M., Ise T. 2021. Explainable identification and mapping of trees using UAV RGB image and deep learning. Scientific Reports 11(1): 903. DOI: 10.1038/s41598-020-79653-9
Otero V., Van De Kerchove R., Satyanarayana B., Martínez-Espinosa C., Fisol M.A.B., Ibrahim M.R.B., Sulong I., Mohd-Lokman H., Lucas R., Dahdouh-Guebas F. 2018. Managing mangrove forests from the sky: forest inventory using field data and unmanned aerial vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. Forest Ecology and Management 411: 35–45. DOI: 10.1016/j.foreco.2017.12.049
Panagiotidis D., Abdollahnejad A., Surový P., Chiteculo V. 2017. Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing 38(8–10): 2392–2410. DOI: 10.1080/01431161.2016.1264028
Peerbhay K.Y., Mutanga O., Ismail R. 2013. Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing 79: 19–28. DOI: 10.1016/j.isprsjprs.2013.01.013
Petrie G., Toth C.K. 2009. Terrestrial laser scanners. In: J. Shan, C.K. Toth (Eds.): Topographic laser ranging and scanning: principles and processing. Boca Raton: CRS Press. P. 87–128.
Picos J., Bastos G., Míguez D., Alonso L., Armesto J. 2020. Individual Tree Detection in a Eucalyptus Plantation Using Unmanned Aerial Vehicle (UAV)-LiDAR. Remote Sensing 12(5): 885. DOI: 10.3390/rs12050885
Portnov A.M., Bykhovets S.S., Din E.S., Ivanova N.V., Frolov P.V., Shanin V.N., Shashkov M.P. 2021. Quantitative assessment of canopy gaps of an old-growth broad-leaved forest by ground and remote methods. In: Mathematical modeling in ecology. Pushchino: Pushchino Scientific Center for Biological Research of RAS. P. 99–102. [In Russian]
Prokhorov A.A., Platonova E.A., Shreders M.A., Tarasenko V.V., Andryusenko V.V., Kulikova V.V. 2013. Components of the information space of Botanic Gardens. Geoinformational system of the Botanic Garden PetrSU. Hortus Botanicus 8: 66–74. [In Russian]
R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.R-project.org/
Raumonen P., Kaasalainen M., Åkerblom M., Kaasalainen S., Kaartinen H., Vastaranta M., Holopainen M., Disney M., Lewis P. 2013. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sensing 5(2): 491–520. DOI: 10.3390/rs5020491
Reshetyuk Y. 2009. Self-calibration and direct georeferencing in terrestrial laser scanning. Doctoral thesis. Stockholm, Sweden: Royal Institute of Technology. 174 p.
Roussel J., Auty D., Coops N.C., Tompalski P., Goodbody T.R., Meador A.S., Bourdon J., de Boissieu F., Achim A. 2020. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment 251: 112061. DOI: 10.1016/j.rse.2020.112061
Rybakov D.S., Belashev B.Z. 2020. Weather conditions, air pollution, emergency calls and population mortality in Petrozavodsk. Human Ecology 27(5): 21–30. DOI: 10.33396/1728-0869-2020-5-21-30 [In Russian]
Safonova A., Hamad Y., Dmitriev E., Georgiev G., Trenkin V., Georgieva M., Dimitrov S., Iliev M. 2021. Individual tree crown delineation for the species classification and assessment of vital status of forest stands from UAV images. Drones 5(3): 77. DOI: 10.3390/drones5030077
Sokolova M., Japkowicz N., Szpakowicz S. 2008. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In: A. Sattar, Bh. Kang (Eds.): Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science. Vol. 4304. Berlin; Heidelberg: Springer. P. 1015–1021. DOI: 10.1007/11941439_114
Tasoulas E., Varras G., Tsirogiannis I., Myriounis C. 2013. Development of a GIS application for urban forestry management planning. Procedia Technology 8: 70–80. DOI: 10.1016/j.protcy.2013.11.011
Véga C., St-Onge B. 2009. Mapping site index and age by linking a time series of canopy height models with growth curves. Forest Ecology and Management 257(3): 951–959. DOI: 10.1016/j.foreco.2008.10.029
Vosselman G., Maas H.G. (Eds.) 2011. Airborne and Terrestrial Laser Scanning. Dunbeath: Whittles Publishing. 336 p.
Watts A.C., Ambrosia V.G., Hinkley E.A. 2012. Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sensing 4(6): 1671–1692. DOI: 10.3390/rs4061671
Wehr A., Lohr U. 1999. Airborne laser scanning–an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing 54(2–3): 68–82. DOI: 10.1016/S0924-2716(99)00011-8
Zahawi R.A., Dandois J.P., Holl K.D., Nadwodny D., Reid J.L., Ellis E.C. 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation 186: 287–295. DOI: 10.1016/j.biocon.2015.03.031
Zhang J., Hu J., Lian J., Fan Z., Ouyang X., Ye W. 2016. Seeing the forest from drones: testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation 198: 60–69. DOI: 10.1016/j.biocon.2016.03.027
Zhang W., Qi J., Wan P., Wang H., Xie D., Wang X., Yan G. 2016. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing 8(6): 501. DOI: 10.3390/rs8060501
Zhou J., Proisy C., Descombes X., Le Maire G., Nouvellon Y., Stape J.L., Viennois G., Zerubia J., Couteron P. 2013. Mapping local density of young Eucalyptus plantations by individual tree detection in high spatial resolution satellite images. Forest Ecology and Management 301: 129–141. DOI: 10.1016/j.foreco.2012.10.007