Vladimir V. Alexandrov, PhD, Senior Researcher of the A.O. Kovalevsky Institute of Biology of the Southern Seas (299011, Russia, Sevastopol, Nakhimov Avenue, 30); iD ORCID:; e-mail:
Nataliya A. Milchakova, PhD, Leading Researcher of the A.O. Kovalevsky Institute of Biology of the Southern Seas (299011, Russia, Sevastopol, Nakhimov Avenue, 30); iD ORCID:; e-mail:

Reference to article

Alexandrov V.V., Milchakova N.A. 2022. Do Protected Areas influence populations of the threatened red alga Phyllophora crispa along the southwestern coast of Crimea (the Black Sea)?. Nature Conservation Research 7(4): 70–83.

Section Research articles

The perennial sciaphilous alga Phyllophora crispa (Phyllophoraceae, Rhodophyta) belongs to the main community-forming species of the Black Sea but due to the catastrophic degradation of its populations, it has been listed as an endangered species in the Red Data Book of the Russian Federation. Phyllophora crispa off the southwestern coast of Crimea is preserved within six Protected Areas (PAs) established between 1972 and 2017, which include the narrow 300-m-wide strips of coastal waters ranging from 0.0597 km2 to 0.208 km2 in area. Despite a long existence, the degeneration of P. crispa assemblages has been shown in some of them that may indicate inefficient measures aimed at conserving bottom communities in Marine PAs (MPAs) and the need to optimise the regional PA network. Therefore, this study addresses assessing the effectiveness of the preservation of P. crispa in MPAs along the southwestern coast of Crimea, and it aims at two main objectives: to compare the status of P. crispa populations in the study area at present and before the MPA establishment, and to assess their current state in the marine protected and unprotected areas. In 2015–2020, the density, biomass, weight and length of P. crispa thalli were determined in five MPAs ranged in age 33–48 years of protection and in 16 unprotected water areas, at depths from 0.5 m to 20 m. A comparison of the obtained and published data for the 5 m to 20 m depth range showed that from 1964–1967 until 2015–2020, the P. crispa biomass in the study area decreased on average 2.7-fold, the density 1.5-fold and the thallus weight 2.0-fold. Evaluating the decline of the populations of P. crispa along the depth range of 5–15 m showed that it was most pronounced at a 15-m depth, being statistically significant in biomass and thallus weight. At the same time, an analysis of variance showed no effect of protection on the between-year change in P. crispa population parameters. In addition, in 2015–2020, there was no statistically significant difference in the average biomass and density of this species inside and outside the MPAs. The average weight and length of thalli did not differ due to protection either, except for a depth of 10 m where values of these parameters were, respectively, 3.3 times and 1.4 times higher inside than outside MPAs. One explanation for the non-significant MPA effect on the state of populations of P. crispa could be a lack of statistical power in our study. Another one was the small area and low width of MPAs, which makes the seaweed communities vulnerable to negative impacts near the MPA borders. To improve the effectiveness of the conservation of P. crispa in the southwestern Crimea, it was recommended to increase the MPA coverage, create buffer zones around MPAs and take measures resulting in environmental improvement throughout the region.


biomass, density, effectiveness, long-term changes, macrophytes, Marine Protected Area

Artice information

Received: 21.06.2022. Revised: 04.08.2022. Accepted: 14.08.2022.

The full text of the article

Abaza V., Dumitrache C., Filimon A., Marin O. 2019. Present ecological status of the main benthic habitats from the Romanian Black Sea Shelf. Marine Research Journal 49(1): 74–91. DOI: 10.55268/CM.2019.49.74
Abliazov E.R., Boltachev A.R., Karpova E.P., Pashkov A.N., Danilyuk O.N. 2021. Ichthyofauna of the Black Sea coastal zone in the Laspi Bay area (Crimea). Marine Biological Journal 6(2): 3–17. DOI: 10.21072/mbj.2021.06.2.01
Agardy T., di Sciara N.G., Christie P. 2011. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Marine Policy 35(2): 226–232. DOI: 10.1016/j.marpol.2010.10.006
Alexandrov B., Minicheva G., Zaitsev Y. 2017. Black Sea Network of Marine Protected areas: European approaches and adaptation to expansion and monitoring in Ukraine. In: P.D. Goriup (Ed.): Management of Marine Protected Areas: A Network Perspective. New York: John Wiley & Sons Ltd. P. 227–246. DOI: 10.1002/9781119075806.ch12
Babcock R.C., Kelly S., Shears N.T., Walker J.W., Willis T.J. 1999. Changes in community structure in temperate marine reserves. Marine Ecology Progress Series 189: 125–134. DOI: 10.3354/meps189125
Bardunov L.V., Novikov V.S. (Eds.). 2008. Red Data Book of the Russian Federation. Plants and Fungi. Moscow: KMK Scientific Press Ltd. 885 p. [In Russian]
Barrett M.S., Buxton C.D., Edgar G.J. 2009. Changes in invertebrate and macroalgal populations in Tasmanian marine reserves in the decade following protection. Journal of Experimental Marine Biology and Ecology 370(1–2): 104–119. DOI: 10.1016/j.jembe.2008.12.005
Begun T., Muresan M., Zaharia T., Dencheva K., Sezgin M., Bat L., Velikova V. 2012. Conservation and Protection of the Black Sea Biodiversity. Review of the existing and planned protected areas in the Black Sea (Bulgaria, Romania, Turkey) with a special focus on possible deficiencies regarding law enforcement and implementation of management plans. EC DG Env. MISIS Project Deliverables. 110 p.
Begun T., Teacă A., Mureşan M., Quijón P.A., Menabit S., Surugiu V. 2022. Habitat and Macrozoobenthic Diversity in Marine Protected Areas of the Southern Romanian Black Sea Coast. Frontiers in Marine Science 9: 845507. DOI: 10.3389/fmars.2022.845507
Benedetti-Cecchi L., Bertocci I., Micheli F., Maggi E., Fosella T., Vaselli S. 2003. Implications of spatial heterogeneity for management of marine protected areas (MPAs): examples from assemblages of rocky coasts in the northwest Mediterranean. Marine Environmental Research 55(5): 429–458. DOI: 10.1016/S0141-1136(02)00310-0
Berov В., Todorova М., Dimitrov L., Rinde E., Karamfilov V. 2018. Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea marine protected area. Estuarine, Coastal and Shelf Science 200: 234–247. DOI: 10.1016/j.ecss.2017.11.020
Boersma P.D., Parrish J.K. 1999. Limiting abuse: marine protected areas, a limited solution. Ecological Economics 31(2): 287–304. DOI: 10.1016/S0921-8009(99)00085-3
Boltachev A.R. 2006. Trawl fishery and its effect on the bottom biocenoses in the Black Sea. Marine Ecological Journal 5(3): 45–56. [In Russian]
Boltachev A.R., Karpova E.P., Danilyuk O.N. 2009. Findings of new and rare fish species in the coastal zone of the Crimea (the Black Sea). Journal of Ichthyology 49(4): 277–291. DOI: 10.1134/S0032945209040018
Boltachev A.R., Sergeeva N.G., Zagorodnyaya Yu.A., Klimova T.N. 2012. Sand mining on the shelf near Sevastopol as a threat to coastal ecosystem and biological diversity of the Black Sea. In: N.V. Bagrov (Ed.): Biodiversity and Sustainable Development. Simferopol. P. 39–42. [In Russian]
Bucharest Convention. 1992. Convention on the protection of the Black Sea against pollution. ANNEX 2 Provisional list of species of the Black Sea importance. Available from
Cacabelos E., Martins G.M., Faria J., Prestes A.C.L., Costa T., Moreu I., Neto A.I. 2020. Limited effects of marine protected areas on the distribution of invasive species, despite positive effects on diversity in shallow-water marine communities. Biological Invasions 22: 1169–1179. DOI: 10.1007/s10530-019-02171-x
Ceccherelli G., Casu D., Pala D., Pinna S., Sechi N. 2006. Evaluating the effects of protection on two benthic habitats at Tavolara-Punta Coda Cavallo MPA (North-East Sardinia, Italy). Marine Environmental Research 61(2): 171–185. DOI: 10.1016/j.marenvres.2005.09.002
Claudet J., Osenberg C.W., Benedetti-Cecchi L., Domenici P., García-Charton J.A., Pérez-Ruzafa A., Badalamenti F., Bayle-Sempere J., Brito A., Bulleri F., Culioli J.M., Dimech M., Falcón J.M., Guala I., Milazzo M., Sánchez-Meca J., Somerfield P.J., Stobart B., Vandeperre F., Valle C., Planes S. 2008. Marine reserves: size and age do matter. Ecology Letters 11(5): 481–489. DOI: 10.1111/j.1461-0248.2008.01166.x
Currie D., Sorokin S. 2009. Evaluating the effects of reserve closure on algae, invertebrate and fish assemblages at a temperate South Australian marine reserve. Journal of the Marine Biological Association of the United Kingdom 89(4): 651–661. DOI: 10.1017/S0025315409000125
Dovgal I.V., Korzhenevsky V.V. (Eds.). 2018. Red Data Book of the city of Sevastopol. Kaliningrad; Sevastopol: ROST-DOAFK. 432 p. [In Russian]
Dyakov N.N., Malchenko Y.A., Lipchenko A.E., Bobrova S.A., Timoshenko T.Y. 2020. Hydrological and hydrochemical characteristics of Crimean coastal waters and necessary measures to reduce the pollution level of recreation zones. Proceedings of the State Institute of Oceanography 221: 163–194. [In Russian]
Edgar G.J., Barrett N.S. 1999. Effects of the declaration of marine reserves on Tasmanian reef fishes, invertebrates and plants. Journal of Experimental Marine Biology and Ecology 242(1): 107–144. DOI: 10.1016/S0022-0981(99)00098-2
Edgar G., Stuart-Smith R., Willis T., Kininmonth S., Baker S.C., Banks S., Barrett N.S., Becerro M.A., Bernard A.T.F., Berkhout J., Buxton C.D., Campbell S.J., Cooper A.T., Davey M., Edgar S.C., Försterra G., Galván D.E., Irigoyen A.J., Kushner D.J., Moura R., Parnell P.E.D., Shears N.T., Soler G., Strain E.M.A., Thomson J.R. 2014. Global conservation outcomes depend on marine protected areas with five key features. Nature 506(7487): 216–220. DOI: 10.1038/nature13022
Fox J., Weisberg S. 2019. An R companion to applied regression. 3rd ed. Thousand Oaks, CA: Sage. 608 p.
Fraschetti S., Terlizzi A., Bussotti S., Guarnieri G., D'Ambrosio P., Boero F. 2005. Conservation of Mediterranean seascapes: analyses of existing protection schemes. Marine Environmental Research 59(4): 309–332. DOI: 10.1016/j.marenvres.2004.05.007
Gianni F., Bartolini F., Airoldi L., Ballesteros E., Francour P., Guidetti P., Meinesz A., Thibaut T., Mangialajo L. 2013. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of marine protected areas. Advances in Oceanography and Limnology 4(2): 83–101. DOI: 10.1080/19475721.2013.845604
Gianni F., Bartolini F., Pey A., Laurent M., Martins G.M., Airoldi L., Mangialajo L. 2017. Threats to large brown algal forests in temperate seas: the overlooked role of native herbivorous fish. Scientific Reports 7(1): 6012. DOI: 10.1038/s41598-017-06394-7
Gilby B.L., Maxwell P.S., Tibbetts I.R., Stevens T. 2015. Bottom-up factors for algal productivity outweigh no-fishing marine protected area effects in a marginal coral reef system. Ecosystems 18(6): 1056–1069. DOI: 10.1007/s10021-015-9883-8
Gruzinov V.M., Dyakov N.N., Mezenceva I.V., Malchenko Y.A., Zhohova N.V., Korshenko A.N. 2019. Sources of coastal water pollution near Sevastopol. Oceanology 59(4): 523–532. DOI: 10.1134/S0001437019040076
Gubbay S., Sanders N., Haynes T., Janssen J.A.M., Rodwell J.R., Nieto A., García Criado M., Beal S., Borg J., Kennedy M., Micu D., Otero M., Saunders G., Calix M. 2016. European Red List of habitats. Part 1: Marine habitats. Luxembourg: Publications Office of the European Union. 46 p. DOI: 10.2779/032638
Kalinina E.M. 1963. Growth and nutrition of the Black Sea greenfinches of the genera Crenilabrus and Symphodus. Proceedings of the Sevastopol Biological Station 16: 323–336. [In Russian]
Kalugina-Gutnik A.A. 1974. Bottom vegetation of the Sevastopol Bay. Biologiya Morya 32: 133–164. [In Russian]
Kalugina-Gutnik A.A. 1975. Phytobenthos of the Black Sea. Kiev: Naukova Dumka. 248 p. [In Russian]
Kalugina-Gutnik A.A., Kulikova N.M. 1974. Bottom vegetation near the western coast of Crimea. Biologiya Morya 3: 111–129. [In Russian]
Kassambara A. 2021. rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.0. Available from
Kassambara A., Mundt F. 2019. factoextra: extract and visualize the results of multivariate data analyses. R package version 106. Available from
Kolyuchkina G.A., Syomin V.L., Simakova U.V., Mokievsky V.O. 2018. Presentability of the Utrish Nature Reserve's benthic communities for the North Caucasian Black Sea Coast. Nature Conservation Research 3(4): 1–16. DOI: 10.24189/ncr.2018.065
Kovardakov S.A., Kovrigina N.P., Izmest'yeva M.A. 2004. Bottom phytocenosis in the water area from Cape Balaklavsky to Cape Aya and its contribution to the processes of self-purification. Monitoring Systems of Environment 7: 250–257. [In Russian]
Lê S., Josse J., Husson F. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25(1): 1–18. DOI: 10.18637/jss.v025.i01
Legendre P., Legendre L. 1998. Numerical Ecology. 2nd ed. Amsterdam: Elsevier. 853 p.
Lester S., Halpern B., Grorud-Colvert K., Lubchenco J., Ruttenberg B., Gaines S., Airamé S., Warner R. 2009. Biological effects within no-take marine reserves: a global synthesis. Marine Ecology Progress Series 384: 33–46. DOI: 10.3354/meps08029
Litvinskaya S.A. (Ed.). 2017. Red Data Book of the Krasnodarsky Krai. Plants and Fungi. 3rd ed. Krasnodar: Administration of the Krasnodarsky Krai. 850 p. [In Russian]
Logan M. 2010. Biostatistical design and analysis using R: a practical guide. Chichester: Wiley-Blackwell. 546 p.
Luna B., Pérez C.V., Sánchez-Lizaso J.L. 2009. Benthic impacts of recreational divers in a Mediterranean marine protected area. ICES Journal of Marine Science 66(3): 517–523. DOI: 10.1093/icesjms/fsp020
Makkaveeva E.B. 1964. Macrofauna of the seaweed biocenosis in the western Crimean coast. Proceedings of the Sevastopol Biological Station 15: 180–195. [In Russian]
Makkaveeva E.B. 1974. Production of the most abundant species of Cystoseira biocenosis. In: A.S. Konstantinov, Yu.G. Aleev (Eds.): Biological productivity of the southern seas. Kiev: Naukova Dumka. P. 57–70. [In Russian]
McLeod E., Salm R., Green A., Almany J. 2009. Designing marine protected area networks to address the impacts of climate change. Frontiers in Ecology and the Environment 7(7): 362–370. DOI: 10.1890/070211
Milazzo M., Chemello R., Badalamenti F., Camarda R., Riggio S. 2002. The impact of human recreational activities in marine protected areas: What lessons should be learnt in the Mediterranean Sea? Marine Ecology 23(s1): 280–290. DOI: 10.1111/j.1439-0485.2002.tb00026.x
Milchakova N.A. 2003. Macrophytobenthos. In: V.N. Eremeev, A.V. Gaevskaya (Eds.): Modern condition of biological diversity of Crimea (the Black Sea sector). Sevastopol: Ekosi-Gidrophisika. P. 152–208. [In Russian]
Milchakova N.A. 2012. Cenopopulation dynamics and problems of macrophytes protection in the Ukrainian shelf of the Black Sea. In: S.L. Mosyakin (Ed.): The plant kingdom in the Red Data Book of Ukraine: Implementing the global strategy for plant conservation. Kyiv: Рalyvoda A.V. P. 209–212. [In Russian]
Milchakova N.A., Mironova N.V., Ryabogina V.G. 2011. Biological resources of the Black Sea and the Sea of Azov. In: V.N. Eremeev, A.V. Gaevskaya, G.E. Shulman, Yu.A. Zagorodnyaya (Eds.): Biological resources of the Black Sea and of Azov. Sevastopol: Ekosi-Gidrophisika. P. 117–139. [In Russian]
Milchakova N.A., Mironova N.V., Alexandrov V.V. 2013. Dynamics, causes of degradation and the prognosis of restoration Zernov Phyllophora field (the Black Sea). In: G. de Lange, M. Gačić, A. Romaña, M. da Costa, F. Boero, C. Turan (Eds.): Rapports et Procès-Verbaux des Réunions de la Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée. Vol. 40. Monaco: CIESM. P. 622.
Milchakova N.A., Alexandrov V.V., Bondareva L.V., Pankeyeva T.V., Chernysheva E.B. 2015. Marine protected areas of the Crimea. Simferopol: N. Orianda. 312 p. [In Russian]
Milchakova N.A., Alexandrov V.V., Ryabogina V.G. 2019. State of key phytocenoses of marine protected areas and problems their conservation (southwestern Crimea, Black Sea). Plant Biology and Horticulture: theory, innovation 149: 113–123. DOI: 10.36305/0201-7997-2019-149-113-123 [In Russian]
Orfanidis S., Panayotidis P., Ugland K. 2011. Ecological Evaluation Index continuous formula (EEI-c) application: a step forward for functional groups, the formula and reference condition values. Mediterranean Marine Science 12(1): 199–232. DOI: 10.12681/mms.60
Orlando-Bonaca M., Lipej L., Orfanidis S. 2008. Benthic macrophytes as a tool for delineating, monitoring and assessing ecological status: the case of Slovenian coastal waters. Marine Pollution Bulletin 56(4): 666–676. DOI: 10.1016/j.marpolbul.2007.12.018
PARF. 2022. Information-Analytical System «Protected Areas of the Russian Federation». Available from [In Russian]
Parravicini V., Micheli F., Montefalcone M., Morri C., Villa E., Castellano M., Povero P., Bianchi C.N. 2013. Conserving biodiversity in a human-dominated world: degradation of marine sessile communities within a protected area with conflicting human uses. PLoS ONE 8(10): e75767. DOI: 10.1371/journal.pone.0075767
R Core Team. 2019. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from
Raventos N., Ferrari B., Planes S. 2009. Differences in population parameters and behaviour of the herbivorous fish Sarpa salpa between protected and unprotected seagrass meadows in the north-western Mediterranean. Journal of the Marine Biological Association of the United Kingdom 89(6): 1153–1159. DOI: 10.1017/S0025315409000423
Roberts C.M., Andelman S., Branch G., Bustamante R.H., Castilla J.C., Dugan J., Halpern B.S., Lafferty K.D., Leslie H., Lubchenco J., Mcardle D., Possingham H.P., Ruckelshaus M., Warner R.R. 2003. Ecological criteria for evaluating candidate sites for marine reserves. Ecological Applications 13(sp1): 199–214. DOI: 10.1890/1051-0761(2003)013[0199:ECFECS]2.0.CO;2
Ryabushko V.I., Shchurov S.V., Kovrigina N.P., Lisitskaya E.V., Pospelova N.V. 2020. Comprehensive Research of the Environmental Status of Coastal Waters of Sevastopol (Western Crimea, Black Sea). Ecological Safety of the Coastal and Shelf Zones of the Sea 1: 103–118. DOI: 10.22449/2413-5577-2020-1-103-118 [In Russian]
Saarman E., Gleason M., Ugoretz J., Airamé S., Carr M., Fox E., Frimodig A., Mason T., Vasques J. 2013. The role of science in supporting marine protected area network planning and design in California. Ocean and Coastal Management 74: 45–56. DOI: 10.1016/j.ocecoaman.2012.08.021
Sevostyanova M.V., Pavlenko L.F., Korablina I.V. 2016. Current level of the Black Sea pollution by oil and heavy metals. In: A.V. Gaevskaya (Ed.): Marine biological research: achievements and perspectives. Vol. 3. Sevastopol: EKOSI-Gidrofizika. P. 210–213. [In Russian]
Shaganov V.V. 2018. Fish of the stony sublittoral of the South-Eastern Crimea: composition, distribution by biotopes, ecology features. PhD Thesis. Kerch: Kerch State Marine Technological University. 133 p. [In Russian]
Shchurov S.V., Kovrigina N.P., Ladygina L.V. 2019. Seasonal variation of abiotic factors of environment and phytoplankton in the Laspi Bay mussel farm area (2010–2011). Scientific Notes of V.I. Vernadsky Crimean Federal University. Geography. Geology 5(2): 184–201. [In Russian]
Shears N.T., Babcock R.C. 2003. Continuing trophic cascade effects after 25 years of no-take marine reserve protection. Marine Ecology Progress Series 246: 1–16. DOI: 10.3354/meps246001
Simakova U.V., Maximova O.V. 2009. Present-day state of the attached Phyllophora community in the vicinity of the Novorossijsk. In: Proceedings of the 9th International Conference on the Mediterranean Coastal Environment, Medcoast 2009 (Sochi, 10–14 November 2009). Vol. 1. Sochi. P. 317–322.
Skrebovska S.V., Shaposhnikova A.O. 2016. Macrophytic algae of western part of Dzharylgach Gulf in the Black Sea. Chornomorski Botanical Journal 12(1): 72–77. [In Ukrainian]
Thibaut Th., Pinedo S., Torras X., Ballesteros E. 2005. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Alberes coast (France, North-western Mediterranean). Marine Pollution Bulletin 50(12): 1472–1489. DOI: 10.1016/j.marpolbul.2005.06.014
Tikhonova E.A., Soloveva O.V., Mironov O.A., Burdiyan N.V. 2020. Sanitary and Biological Characteristics of the Laspi Reserve Coastal Waters (the Black Sea). Ecological Safety of Coastal and Shelf Zones of Sea 3: 95–106. DOI: 10.22449/2413-5577-2020-3-95-106 [In Russian]
Tkachenko F.P., Kovtun O.O. 2014. Contemporary condition of seaweeds flora of Zmeiny island сostal zone (Black Sea). Chornomorski Botanical Journal 10(1): 37–47. [In Ukrainian]
Tkachenko F.P., Maslov I.I. 2002. Marine macrophytobenthos of Chernomorsky Biosphere Reservation. Ecologiya Morya 62: 34–40. [In Russian]
Turnbull J.W., Johnston E.L., Clark G.F. 2021. Evaluating the social and ecological effectiveness of partially protected marine areas. Conservation Biology 35(3): 921–932. DOI: 10.1111/cobi.13677
Vaughan D., Agardy N. 2020. Marine protected areas and marine spatial planning – allocation of resource use and environmental protection. In: J. Humphreys, R.W.E. Clark (Eds.): Marine Protected Areas: Science, Policy and Management. Amsterdam-Oxford-Cambridge: Elsevier. P. 13–35. DOI: 10.1016/B978-0-08-102698-4.00002-2
Verlaque M. 1990. Relationships between Sarpa salpa (Linnaeus, 1758) (Téléostéen, Sparidae), other browser fishes, and the Mediterranean algal phytobenthos. Oceanologica Acta 13(3): 373–388.
Wilson K.L., Tittensor D.P., Worm B., Lotze H.K. 2020. Incorporating climate change adaptation into marine protected area planning. Global Change Biology 26(6): 3251–3267. DOI: 10.1111/gcb.15094
Yena A.V., Fateryga A.V. (Eds.). 2015. Red Data Book of the Republic of Crimea. Plants, algae and fungi. Simferopol: ARIAL. 480 p. [In Russian]
Zaitsev Yu.P., Mamaev V.O. 1997. Marine biological diversity in the Black Sea: a study of change and decline. New York: United Nations Publications. 208 p.