Статья

Название статьи ЛЕСНЫЕ ПОЖАРЫ ИМЕЮТ КРАТКОВРЕМЕННЫЕ ОТРИЦАТЕЛЬНЫЕ ЭФФЕКТЫ НА СУПЕРДОМИНИРУЮЩИЙ ПАПОРОТНИК PTERIDIUM ARACHNOIDEUM (DENNSTAEDTIACEAE) В БРАЗИЛЬСКОЙ САВАННЕ
Авторы

Фернанда Кристина дос Сантос Тиберио, доцент Федерального института образования, науки и технологии штата Сан Пауло (авенида Клара Жианотти де Соуза, 5180, 11900-000 Режистро, штат Сан Пауло, Бразилия); iD ORCID: https://orcid.org/0000-0002-0822-6990; e-mail: fernanda.tiberio@ifsp.edu.br
Рафаэль де Оливейра Шавиэр, постдок-исследователь в Институте биологии Университета штата Сан Пауло в г. Кампинас (университетский городок Зеферино Ваз, улица Монтейро Лобато, 255, 13083-862 Кампинас, штат Сан Пауло, Бразилия); e-mail: filosxavier@gmail.com
Павел Викторович Додонов, доцент Института биологии Федерального университета Баии (улица Барона Жеремоабо, 668, Кампус Ондина, 40170-115 Салвадор, штат Баия, Бразилия); iD ORCID: https://orcid.org/0000-0001-8205-6320; e-mail: pdodonov@gmail.com, pdodonov@ufba.br
Далва М. Силва Матос, профессор Департамента гидробиологии Федерального университета Сан Карлоса (п.я. 676, 13565-905 Сан Карлос, штат Сан Пауло, Бразилия); iD ORCID: https://orcid.org/0000-0001-9461-2179; e-mail: dmatos@ufscar.br

Библиографическое описание статьи

Tiberio F.C.S., Xavier R.O., Dodonov P., Silva Matos D.M. 2022. Fire has short-term negative effects on a super-dominant native fern, Pteridium arachnoideum (Dennstaedtiaceae), in a Brazilian savanna // Nature Conservation Research. Vol. 7(3). P. 15–25. https://dx.doi.org/10.24189/ncr.2022.027

Electronic Supplement. Summary statistics and original data for a burnt and a control site with Pteridium arachnoideum before and after a prescribed fire in the study area (Central Brazil) (Ссылка).


Рубрика Оригинальные статьи
DOI https://dx.doi.org/10.24189/ncr.2022.027
Аннотация

Лесные пожары играют главную роль в преобладающем распространении сверхдоминантного папоротника-орляка Pteridium arachnoideum в неотропических лесах. Однако не ясно, применимо ли это утверждение к бразильской саванне (Серрадо), чья растительность естественным образом приспособлена к огню. Мы оценили воздействие пожара на надземную биомассу P. arachnoideum в экологическом заповеднике с Серрадо в центральной части Бразилии. Мы измерили высоту вайи, плотность, биомассу почвы и лесной подстилки до и в течение двух лет после пожара, а также взяли пробы из контрольной зоны для контроля сезонных изменений и выявления других возможных причин гибели растений. Через 18 месяцев на местах пожара средняя высота листьев P. arachnoideum и надземная биомасса уменьшились более чем в три раза. Густота вайи уменьшилась как на участках поражённых огнем, так и на контрольном участке, что указывает на то, что это могло быть вызвано другими причинами, помимо пожара. Биомасса лесной подстилки уменьшилась вскоре после пожара на сгоревшем участке, но уже через год вернулась к допожарному уровню. Возможным объяснением столь тяжёлых последствий пожара на рост P. arachnoideum является проведение пожара в начале засухи, а также активность муравьев-листорезов. Эти факторы, вероятно, ограничили немедленное восстановление растения. Тем не менее, эффективный клональный рост P. arachnoideum, по-видимому, не позволил огню полностью уничтожить растение на участке пожара. Мы пришли к выводу, что воздействие пожаров может привести к снижению численности P. arachnoideum в Серрадо. Таким образом, контролируемые пожары могут быть использованы в качестве инструмента управления численностью P. arachnoideum на участках Серрадо, где этот вид является супердоминирующим, в идеале в сочетании с другими мерами борьбы.

Ключевые слова

клональный рост, контролируемый пожар, нарушение, неотропический папоротник-орляк, Серрадо

Информация о статье

Поступила: 08.02.2022. Исправлена: 20.06.2022. Принята к опубликованию: 25.06.2022.

Полный текст статьи
Список цитируемой литературы

Adie H., Richert S., Kirkman K.P., Lawes M.J. 2011. The heat is on: frequent high intensity fire in bracken (Pteridium aquilinum) drives mortality of the sprouting tree Protea caffra in temperate grasslands. Plant Ecology 212(12): 2013–2022. DOI: 10.1007/s11258-011-9945-8
Alonso-Amelot M.E., Rodulfo-Baechler S. 1996. Comparative spatial distribution, size, biomass and growth rate of two varieties of bracken fern (Pteridium aquilinum L. Kuhn) in a neotropical montane habitat. Vegetatio 125(2): 137–147. DOI: 10.1007/BF00044647
Amouzgar L., Ghorbani J., Shokri M., Marrs R.H., Alday J.G. 2020. Pteridium aquilinum performance is driven by climate, soil and land-use in Southwest Asia. Folia Geobotanica 55(4): 301–314. DOI: 10.1007/s12224-020-09383-3
Baer A., Wheeler J.K., Pittermann J. 2020. Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable light. Annals of Botany 125(4): 691–700. DOI: 10.1093/aob/mcaa006
Bond W.J., Keeley J.E. 2005. Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution 20(7): 387–394. DOI: 10.1016/j.tree.2005.04.025
Brooks M.L., D'Antonio C.M., Richardson D.M., Grace J.B., Keeley J.E., DiTomaso J.M., Hobbs R.J., Pellant M., Pyke D. 2004. Effects of invasive alien plants on fire regimes. BioScience 54(7): 677–688. DOI: 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
Campanello P.I., Gatti M.G., Ares A., Montti L., Goldstein G. 2007. Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest. Forest Ecology and Management 252(1–3): 108–117. DOI: 10.1016/j.foreco.2007.06.032
Costa A.N., Vasconcelos H.L., Vieira‐Neto E.H., Bruna E.M. 2008. Do herbivores exert top-down effects in Neotropical savannas? Estimates of biomass consumption by leaf-cutter ants. Journal of Vegetation Science 19(6): 849–854. DOI: 10.3170/2008-8-18461
D'Antonio C.M., Vitousek P.M. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23: 63–87. DOI: 10.1146/annurev.es.23.110192.000431
D'Antonio C.M., Hughes R.F., Vitousek P.M. 2001. Factors influencing dynamics of two invasive C4 grasses in seasonally dry Hawaiian woodlands. Ecology 82(1): 89–104. DOI: 10.1890/0012-9658(2001)082[0089:FIDOTI]2.0.CO;2
den Ouden J. 2000. The role of bracken (Pteridium aquilinum) in forest dynamics. PhD Thesis. Netherlands: Wageningen University. 218 p.
Ding Y., Zang R., Letcher S.G., Liu S., He F. 2012. Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 121(8): 1263–1270. DOI: 10.1111/j.1600-0706.2011.19992.x
Dodonov P., Xavier R.O., dos Santos Tiberio F.C., de Lucena I.C., Zanelli C.B., da Silva Matos D.M. 2014. Driving factors of small-scale variability in a savanna plant population after a fire. Acta Oecologica 56: 47–55. DOI: 10.1016/j.actao.2014.02.003
Dodonov P., Braga A.L., Harper K.A., Silva Matos D.M. 2017. Edge influence on plant litter biomass in forest and savanna in the Brazilian cerrado. Austral Ecology 42(2): 187–197. DOI: 10.1111/aec.12420
Durigan G., Ratter J.A. 2006. Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962–2000. Edinburgh Journal of Botany 63(1): 119–130. DOI: 10.1017/S0960428606000357
Durigan G., Ratter J.A. 2016. The need for a consistent fire policy for Cerrado conservation. Journal of Applied Ecology 53(1): 11–15. DOI: 10.1111/1365-2664.12559
Farji-Brener A.G. 2001. Why are leaf-cutting ants more common in early secondary forests than in old-growth tropical forests? An evaluation of the palatable forage hypothesis. Oikos 92: 169–177. DOI: 10.1034/j.1600-0706.2001.920120.x
Furley P.A., Ratter J.A. 1988. Soil resources and plant communities of the central Brazilian cerrado and their development. Journal of Biogeography 15(1): 97–108. DOI: 10.2307/2845050
Gallegos S.C., Hensen I., Saavedra F., Schleuning M. 2015. Bracken fern facilitates tree seedling recruitment in tropical fire-degraded habitats. Forest Ecology and Management 337: 135–143. DOI: 10.1016/j.foreco.2014.11.003
Ghorbani J., Le Duc M.G., McAllister H.A., Pakeman R.J., Marrs R.H. 2006. Effects of the litter layer of Pteridium aquilinum on seed banks under experimental restoration. Applied Vegetation Science 9(1): 127–136. DOI: 10.1111/j.1654-109X.2006.tb00662.x
Gorgone-Barbosa E., Pivello V.R., Bautista S., Zupo T., Rissi M.N., Fidelis A. 2015. How can an invasive grass affect fire behavior in a tropical savanna? A community and individual plant level approach. Biological Invasions 17(1): 423–431. DOI: 10.1007/s10530-014-0740-z
Govender N., Trollope W.S., van Wilgen B.W. 2006. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology 43(4): 748–758. DOI: 10.1111/j.1365-2664.2006.01184.x
Guerin N., Durigan G. 2015. Invasion impact by Pteridium arachnoideum (Kaulf.) Maxon (Dennstaedtiaceae) on a neotropical savanna. Acta Botanica Brasilica 29(2): 213–222. DOI: 10.1590/0102-33062014abb3722
Hartig K., Beck E. 2003. The bracken fern (Pteridium arachnoideum (Kaulf.) Maxon) dilemma in the Andes of Southern Ecuador. Ecotropica 9: 3–13.
Herben T. 2004. Physiological integration affects growth form and competitive ability in clonal plants. Evolutionary Ecology 18(5): 493–520. DOI: 10.1007/s10682-004-5141-9
Hoffmann W.A. 1998. Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. Journal of Applied Ecology 35(3): 422–433. DOI: 10.1046/j.1365-2664.1998.00321.x
Hoffmann W.A. 1999. Fire and population dynamics of woody plants in a neotropical savanna: matrix model projections. Ecology 80(4): 1354–1369. DOI: 10.1890/0012-9658(1999)080[1354:FAPDOW]2.0.CO;2
Hoffmann W.A., Solbrig O.T. 2003. The role of topkill in the differential response of savanna woody species to fire. Forest Ecology and Management 180(1–3): 273–286. DOI: 10.1016/S0378-1127(02)00566-2
Hoffmann W.A., Jaconis S.Y., Mckinley K.L., Geiger E.L., Gotsch S.G., Franco A.C. 2012. Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna–forest boundaries. Austral Ecology 37(6): 634–643. DOI: 10.1111/j.1442-9993.2011.02324.x
INMET. 2018. BDMEP–Banco de Dados Meteorológicos para Ensino e Pesquisa. Brasília: Instituto Nacional de Meteorologia. Available from https://bdmep.inmet.gov.br/
Le Duc M.G., Pakeman R.J., Putwain P.D., Marrs R.H. 2000. The variable responses of bracken fronds to control treatments in Great Britain. Annals of Botany 85(Suppl.2): 17–29.
Manly B. 2007. Randomization, bootstrap, and Monte Carlo methods in biology. New York: Chapman and Hall/CRC. 480 p.
Marrs R.H., Watt A.S. 2006. Biological flora of the British Isles: Pteridium aquilinum (L.) Kuhn. Journal of Ecology 94(6): 1272–1321. DOI: 10.1111/j.1365-2745.2006.01177.x
Marrs R.H., Johnson S.W., Le Duc M.G. 1998. Control of bracken and restoration of heathland. VI. The response of bracken fronds to 18 years of continued bracken control or 6 years of control followed by recovery. Journal of Applied Ecology 35(4): 479–490. DOI: 10.1046/j.1365-2664.1998.3540479.x
Menezes G.S.C., Cazetta E., Dodonov P. 2019. Vegetation structure across fire edges in a Neotropical rain forest. Forest Ecology and Management 453: 117587. DOI: 10.1016/j.foreco.2019.117587
Miatto R.C., Silva I.A., Silva-Matos D.M., Marrs R.H. 2011. Woody vegetation structure of Brazilian Cerrado invaded by Pteridium arachnoideum (Kaulf.) Maxon (Dennstaedtiaceae). Flora 206(8): 757–762. DOI: 10.1016/j.flora.2010.12.001
Miranda A.C., Miranda H.S., Dias I.D.F.O., de Souza Dias B.F. 1993. Soil and air temperatures during prescribed cerated fires in Central Brazil. Journal of Tropical Ecology 9(3): 313–320. DOI: 10.1017/S0266467400007367
Oliveira P.S., Marquis R.J. 2002. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York: Columbia University Press. 424 p.
Pakeman R.J., Marrs R.H. 1993. Long-term recovery of bracken (Pteridium aquilinum (L.) Kuhn) after asulam spraying. Annals of Applied Biology 122(3): 519–530. DOI: 10.1111/j.1744-7348.1993.tb04054.x
Pennings S.C., Callaway R.M. 2000. The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology 81(3): 709–716. DOI: 10.1890/0012-9658(2000)081[0709:TAOCIU]2.0.CO;2
Pereira B.A.S., Silva M.A., Mendonça R.C. 2004. Reserva ecológica do IBGE: ambiente e plantas vasculares. Rio de Janeiro: IBGE. 73 p.
Phillips N. 2017. yarrr: A Companion to the e-Book “YaRrr!: The Pirate's Guide to R". R package version 0.1.5. Available from https://CRAN.R-project.org/package=yarrr
Pivello V.R., Coutinho L.M. 1996. A qualitative successional model to assist in the management of Brazilian cerrados. Forest Ecology and Management 87(1–3): 127–138. DOI: 10.1016/S0378-1127(96)03829-7
Pivello V.R., Shida C.N., Meirelles S.T. 1999. Alien grasses in Brazilian savannas: a threat to the biodiversity. Biodiversity and Conservation 8(9): 1281–1294. DOI: 10.1023/A:1008933305857
Pivello V.R., Vieira M.V., Grombone-Guaratini M.T., Matos D.M.S. 2018. Thinking about super-dominant populations of native species – Examples from Brazil. Perspectives in Ecology and Conservation 16(2): 74–82. DOI: 10.1016/j.pecon.2018.04.001
Pittermann J., Limm E., Rico C., Christman M.A. 2011. Structure–function constraints of tracheid-based xylem: a comparison of conifers and ferns. New Phytologist 192: 449–461.
R Development Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.R-project.org/
Ramos-Neto M.B., Pivello V.R. 2000. Lightning fires in a Brazilian savanna National Park: rethinking management strategies. Environmental Management 26(6): 675–684. DOI: 10.1007/s002670010124
Ribeiro J.F., Walter B.M.T. 1998. Fitofisionomias do bioma Cerrado. In: S.M. Sano, S.P. Almeida (Eds.): Cerrado: ambiente e flora. Brasília: Embrapa Cerrados. P. 87–166.
Roos K., Rollenbeck R., Peters T., Bendix J., Beck E. 2010. Growth of tropical bracken (Pteridium arachnoideum): response to weather variations and burning. Invasive Plant Science and Management 3(4): 402–411. DOI: 10.1614/IPSM-D-09-00031.1
Silva Matos D.M., Belinato T.A. 2010. Interference of Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) on the establishment of rainforest trees. Brazilian Journal of Biology 70(2): 311–316. DOI: 10.1590/S1519-69842010000200012
Silva Matos D.M., Santos C.J.F., Chevalier D.D.R. 2002. Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosystems 6(3): 151–161. DOI: 10.1023/A:1026164427792
Silva Matos D.M., Xavier R.O., Tiberio F.C.S., Marrs R.H. 2014. A comparative study of resource allocation in Pteridium in different Brazilian ecosystems and its relationship with European studies. Brazilian Journal of Biology 74(1): 156–165. DOI: 10.1590/1519-6984.22012
Silva I.A., Valenti M.W., Silva-Matos D.M. 2009. Fire effects on the population structure of Zanthoxylum rhoifolium Lam (Rutaceae) in a Brazilian savanna. Brazilian Journal of Biology 69(3): 813–818. DOI: 10.1590/S1519-69842009000400008
Silva U.S.R.D., Silva Matos D.M.D. 2006. The invasion of Pteridium aquilinum and the impoverishment of the seed bank in fire prone areas of Brazilian Atlantic Forest. Biodiversity and Conservation 15(9): 3035–3043. DOI: 10.1007/s10531-005-4877-z
Simon M.F., Grether R., de Queiroz L.P., Skemae C., Pennington R.T., Hughes C.E. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences of the United States of America 106(48): 20359–20364. DOI: 10.1073/pnas.0903410106
Smith M., Nelson B.W. 2011. Fire favours expansion of bamboo-dominated forests in the south-west Amazon. Journal of Tropical Ecology 27(1): 59–64. DOI: 10.1017/S026646741000057X
Stevens C.J., Ceulemans T., Hodgson J.G., Jarvis S., Grime J.P., Smart S.M. 2016. Drivers of vegetation change in grasslands of the Sheffield region, northern England, between 1965 and 2012/13. Applied Vegetation Science 19(2): 187–195. DOI: 10.1111/avsc.12206
Valenti M.W., Cianciaruso M.V., Batalha M.A. 2008. Seasonality of litterfall and leaf decomposition in a cerrado site. Brazilian Journal of Biology 68(3): 459–465. DOI: 10.1590/S1519-69842008000300002
Williams D.G., Baruch Z. 2000. African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biological Invasions 2(2): 123–140. DOI: 10.1023/A:1010040524588
Wirth R., Meyer S.T., Almeida W.R., Araújo M.V., Barbosa V.S., Leal I.R. 2007. Increasing densities of leaf-cutting ants (Atta spp.) with proximity to the edge in a Brazilian Atlantic forest. Journal of Tropical Ecology 23(4): 501–505. DOI: 10.1017/S0266467407004221
Xavier R.O., Alday J.G., Marrs R.H., Matos D.M.S. 2016. The role of Pteridium arachnoideum (Kaulf) on the seed bank of the endangered Brazilian Cerrado. Brazilian Journal of Biology 76(1): 256–267. DOI: 10.1590/1519-6984.21814
Xavier R.O., Dodonov P., da Silva Matos D.M. 2019. Growth and mortality patterns of the Neotropical bracken (Pteridium arachnoideum) and their response to shading in a savanna–riparian forest transition. Flora 252: 36–43. DOI: 10.1016/j.flora.2019.02.005