Article

Article name DATA ON 30-YEAR STAND DYNAMICS IN AN OLD-GROWTH BROAD-LEAVED FOREST IN THE KALUZHSKIE ZASEKI STATE NATURE RESERVE, RUSSIA
Authors

Maxim P. Shashkov, Researcher, Institute of Physicochemical and Biological Problems in Soil Sciences of RAS (142290, Russia, Moscow Region, Pushchino, Institutskaya Street, 2); iD ORCID: https://orcid.org/0000-0002-1328-8758; e-mail: max.carabus@gmail.com
Maxim V. Bobrovsky, Dr.Sc., Leading Researcher, Institute of Physicochemical and Biological Problems in Soil Sciences of RAS (142290, Russia, Moscow Region, Pushchino, Institutskaya Street, 2); iD ORCID: https://orcid.org/0000-0002-3379-368X; e-mail: maxim.bobrovsky@gmail.com
Vladimir N. Shanin, PhD, Senior Researcher, Institute of Physicochemical and Biological Problems in Soil Sciences of RAS (142290, Russia, Moscow Region, Pushchino, Institutskaya Street, 2); iD ORCID: https://orcid.org/0000-0002-8294-7796; e-mail: shaninvn@gmail.com
Larisa G. Khanina, PhD, Leading Researcher, Institute of Mathematical Problems of Biology of RAS – the Branch of the Keldysh Institute of Applied Mathematics of RAS (142290, Russia, Moscow Region, Pushchino, Professor Vitkevich Street, 1); iD ORCID: https://orcid.org/0000-0002-8937-5938; e-mail: khanina.larisa@gmail.com
Pavel Y. Grabarnik, Dr.Sc., Chief Researcher, Institute of Physicochemical and Biological Problems in Soil Sciences of RAS (142290, Russia, Moscow Region, Pushchino, Institutskaya Street, 2); iD ORCID: https://orcid.org/0000-0002-9732-4217; e-mail: pavel.grabarnik@gmail.com
Miroslav N. Stamenov, PhD, Researcher, Institute of Physicochemical and Biological Problems in Soil Sciences of RAS (142290, Russia, Moscow Region, Pushchino, Institutskaya Street, 2); e-mail: mslv-eiksb@inbox.ru
Natalya V. Ivanova, PhD, Senior Researcher, Institute of Mathematical Problems of Biology of RAS – the Branch of the Keldysh Institute of Applied Mathematics of RAS (142290, Russia, Moscow Region, Pushchino, Professor Vitkevich Street, 1); iD ORCID: https://orcid.org/0000-0003-4199-5924; e-mail: natalya.dryomys@gmail.com

Reference to article

Shashkov M.P., Bobrovsky M.V., Shanin V.N., Khanina L.G., Grabarnik P.Ya., Stamenov M.N., Ivanova N.V. 2022. Data on 30-year stand dynamics in an old-growth broad-leaved forest in the Kaluzhskie Zaseki State Nature Reserve, Russia. Nature Conservation Research 7(Suppl.1): 24–37. https://dx.doi.org/10.24189/ncr.2022.013

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2022.013
Abstract

The article provides primary data on repeated tree measurements collected during two censuses on a permanent sampling plot (440 m × 200 m) established in the old-growth polydominant broad-leaved forest in the Kaluzhskie Zaseki State Nature Reserve (centre of European Russia). The time span between the inventories was 30 years, and a total of 11 578 individuals of ten tree, one shrub species, and several undefined tree species of three known genera were registered. During the surveys, tree identity, stem diameter at breast height (DBH) of 1.3 m, and life status (alive or dead) were recorded for every tree individual with DBH ≥ 5 cm. Additional attributes were determined for some individuals. Field data were digitised and compiled into the PostgreSQL database. An accurate data quality assessment, validation, and cleaning (with documentation of changes) have been performed before data standardisation according to the Darwin Core standard. Standardised data were published through the GBIF repository. From 1986 to 1988, 9811 individuals were recorded within the initial census, including 3920 Corylus avellana individual shrubs. Corylus avellana shrubs were recorded without measuring DBH. From 2016 to 2018, 7658 stems were recorded in the recensus, including 3090 living trees marked during the initial census, and 1641 other living trees reaching the DBH of at least 5 cm. Corylus avellana was not included in the recensus. Thus, over 30 years, about 65% of living tree individuals have survived, but the total number of living trees has not changed considerably. The mean diameter of shade-intolerant tree species (Quercus robur, Fraxinus excelsior, Populus tremula, and Betula spp.) has increased the most remarkably during 30 years. For these species, the increase in average diameter, along with the decrease in numbers, is associated with the death of young trees, presumably due to low illumination under the canopy. Contrastingly, shade-tolerant tree species (Ulmus glabra, Tilia cordata, Acer platanoides) increased in number, while their mean diameter increased slightly or even decreased, that evidences the successful regeneration of these species under the canopy. These data are relevant for investigating forest ecology questions at spatiotemporal scales as a model of natural succession.

Keywords

Darwin Core, data quality assessment, GBIF, mesic temperate forest, permanent sampling plot

Artice information

Received: 27.09.2021. Revised: 30.12.2022. Accepted: 03.02.2022.

The full text of the article
References

Allegrini M.C., Canullo R., Campetella G. 2009. ICP-Forests (International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests): Quality assurance procedure in plant diversity monitoring. Journal of Environmental Monitoring 4(11): 782–787. DOI: 10.1039/B818170P
Alonzo M., Andersen H.E., Morton D.C., Cook B.D. 2018. Quantifying boreal forest structure and composition using UAV structure from motion. Forests 9(3): 119. DOI: 10.3390/f9030119
Bennett G., Hardy A., Bunting P., Morgan P., Fricker A. 2020. A transferable and effective method for monitoring continuous cover forestry at the individual tree level using UAVs. Remote Sensing 12(13): 2115. DOI: 10.3390/rs12132115
Brzeziecki B., Bielak K., Bolibok L., Drozdowski S., Zajączkowski J., Żybura H. 2018. Structural and compositional dynamics of strictly protected woodland communities with silvicultural implications, using Białowieża Forest as an example. Annals of Forest Science 75(3): 89. DOI: 10.1007/s13595-018-0767-x
Calders K., Adams J., Armston J., Bartholomeus H., Bauwens S., Bentley L.P., Chave J., Danson F.M., Demol M., Disney M., Gaulton R., Moorthy S.M.K., Levick S.R., Saarinen N., Schaaf C., Stovall A., Terryn L., Wilkes P., Verbeeck H. 2020. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sensing of Environment 251: 112102. DOI: 10.1016/j.rse.2020.112102
Chacón-Madrigal E., Wanek W., Hietz P., Dullinger S. 2018. Traits indicating a conservative resource strategy are weakly related to narrow range size in a group of neotropical trees. Perspectives in Plant Ecology, Evolution and Systematics 32: 30–37. DOI: 10.1016/j.ppees.2018.01.003
Chapman A.D. 2005. Principles of Data Quality. Copenhagen: Global Biodiversity Information Facility. 58 p. DOI: 10.15468/doc.jrgg-a190
Chytrý M., Tichý L., Hennekens S.M., Knollová I., Janssen J.A.M., Rodwell J.S., Peterka T., Marcenò C., Landucci F., Danihelka J., Hájek, M. Dengler J., Novák P., Zukal D., Jiménez-Alfaro B., Mucina L., Abdulhak S., Aćić S., Agrillo E., Attorre F., Bergmeier E., Biurrun I., Boch S., Bölöni J., Bonari G., Braslavskaya T., Bruelheide H., Campos J.A., Čarni A., Casella L. et al. 2020. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science 23(4): 648–675. DOI: 10.1111/avsc.12519
Condit R., Lao S., Singh A., Esufali S., Dolins S. 2014. Data and database standards for permanent forest plots in a global network. Forest Ecology and Management 316: 21–31. DOI: 10.1016/j.foreco.2013.09.011
Di Filippo A., Pederson N., Baliva M., Brunetti M., Dinella A., Kitamura K., Knapp H.D., Schirone B., Piovesan G. 2015. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. Frontiers in Ecology and Evolution 3: 46. DOI: 10.3389/fevo.2015.00046
Evstigneev O.I. 2018. Ontogenetic scales of relation of trees to light (on the example of Eastern European forests). Russian Journal of Ecosystem Ecology 3(3). DOI: 10.21685/2500-0578-2018-3-3
Fischer R., Granke O., Chirici G., Meyer P., Seidling W., Stofer S., Corona P., Marchetti M., Travaglini D. 2009. Background, main results and conclusions from a test phase for biodiversity assessments on intensive forest monitoring plots in Europe. iForest 2: 67–74. DOI: 10.3832/ifor0493-002
Franklin J.F., Van Pelt R. 2004. Spatial aspects of structural complexity in old-growth forests. Journal of Forestry 102(3): 22–28. DOI: 10.1093/jof/102.3.22
GBIF.org. 2021. Global Biodiversity Information Facility Home Page. Available from https://www.gbif.org
GBIF Secretariat. 2021. GBIF Science Review 2020. Copenhagen: GBIF Secretariat. 39 p. DOI: 10.35035/bezp-jj23
Guralnick R., Walls R., Jetz W. 2018. Humboldt Core – toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 41: 713–725. DOI: 10.1111/ecog.02942
Hall R.B.W. 1991. A re-examination of the use of interpoint distances and least squares in mapping forest trees. Ecology 72(6): 2286–2289. DOI: 10.2307/1941578
Heberling J.M., Miller J.T., Noesgaard D., Weingart S.B., Schigel D. 2021. Data integration enables global biodiversity synthesis. Proceedings of the National Academy of Sciences of the United States of America 118(6): e2018093118. DOI: 10.1073/pnas.2018093118
Hubbell S.P., Foster R.B. 1983. Diversity of canopy trees in a neotropical forest and implications for conservation. In: S.L. Sutton, T.C. Whitmore, A.C. Chadwick (Eds.): Tropical rain forest: ecology and management. Oxford: Blackwell Scientific Publication. P. 25–41.
Ivanova N.V., Shashkov M.P. 2021. The possibilities of GBIF data use in ecological research. Russian Journal of Ecology 52(1): 1–8. DOI: 10.1134/S1067413621010069
Ivanova N.V., Shashkov M.P., Shanin V.N. 2021. Study of pine forest stand structure in the Priosko-Terrasny State Nature Biosphere Reserve (Russia) based on aerial photography by quadrocopter. Nature Conservation Research 6(4): 1–14. DOI: 10.24189/ncr.2021.042
Král K., McMahon S.M., Janík D., Adam D., Vrška T. 2014. Patch mosaic of developmental stages in central European natural forests along vegetation gradient. Forest Ecology and Management 330: 17–28. DOI: 10.1016/j.foreco.2014.06.034
Kuuluvainen T., Aakala T. 2011. Natural forest dynamics in boreal Fennoscandia: A review and classification. Silva Fennica 45(5): 823–841. DOI: 10.14214/sf.73
Liu J., Fenf Z., Mannan A., Yang L. 2019. Positioning of coordinates and precision analysis of sample trees using the intelligent forest survey calculator. Computers and Electronics in Agriculture 159: 157–164. DOI: 10.1016/j.compag.2019.03.003
Liu Q., Bi L., Song G., Jin G. 2018. Species–habitat associations in an old-growth temperate forest in northeastern China. BMC Ecology 18: 20. DOI: 10.1186/s12898-018-0177-9
Manabe T., Nishimura N., Miura M., Yamamoto S. 2000. Population structure and spatial patterns for trees in a temperate old-growth evergreen broad-leaved forest in Japan. Plant Ecology 151(2): 181–197. DOI: 10.1023/A:1026512404110
Manov A.V., Kutyavin I.N. 2021. Spatial interrelations in the placement of woody plants in the middle taiga virgin spruce forests of the upper reaches of the Pechora river. Siberian Journal of Forest Science 2: 82–95. DOI: 10.15372/SJFS20210208 [In Russian]
Maslov A. 2020. Old-growth Broad-Leaved Forest in the Center of Moscow City: Structure and Dynamics over 20 Years of Observations. Forestry Information 4: 32–39. DOI: 10.24419/LHI.2304-3083.2020.4.03
Medvedev A.A., Telnova N.O., Kudikov A.V., Alekseenko N.A. 2020. Use of photogrammetric point clouds for the analysis and mapping of structural variables in sparse northern boreal forests. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 17(1): 150–163. DOI: 10.21046/2070-7401-2020-17-1-150-163 [In Russian]
Mohan M., Silva C.A., Klauberg C., Jat P., Catts G., Cardil A., Hudak A.T., Dia M. 2017. Individual tree detection from Unmanned Aerial Vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 8(9): 340. DOI: 10.3390/f8090340
Musolin D.L., Selikhovkin A.V., Shabunin D.A., Zviagintsev V.B., Baranchikov Y.N. 2017. Between ash dieback and emerald ash borer: two Asian invaders in Russia and the future of ash in Europe. Baltic Forestry 23(1): 316–333.
Novenko E.Yu. 2016. Vegetation and climate changes in Central and Eastern Europe in the Late Pleistocene and Holocene at the Interglacial and transitional stages of climatic macro-cycles. Moscow: GEOS. 228 p. [In Russian]
O'Hara K.L., Hasenauer H., Kindermann G. 2007. Sustainability in multi-aged stands: an analysis of long-term plenter systems. Forestry 80(2): 163–181. DOI: 10.1093/forestry/cpl051
Oksanen J. 2020. Vegan: ecological diversity. Available from https://cran.r-project.org/web/packages/vegan/vignettes/diversity-vegan.pdf
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., Wagner H. 2020. vegan: Community Ecology Package. Ver. 3.3.3. Available from https://cran.r-project.org/web/packages/vegan/index.html
Omelko A.M., Ukhvatkina O.N., Zhmerenetsky A.A., Petrenko T.Ya., Sibirina L.A. 2019. Formation of Korean pine (Pinus koraiensis Sieb. Et Zucc.) population mosaic in Korean pine-broadleaved forest in the south of the Russian Far East. Russian Journal of Ecosystem Ecology 4(2). DOI: 10.21685/2500-0578-2019-2-1 [In Russian]
OpenStreetMap contributors. 2015. Planet dump. Available from https://planet.openstreetmap.org
Ovaskainen O., Meyke E., Lo C., Tikhonov G., del Mar Delgado M., Roslin T., Gurarie E., Abadonova M., Abduraimov O., Adrianova O., Akimova T., Akkiev M., Ananin A., Andreeva E., Andriychuk N., Antipin M., Arzamascev K., Babina S., Babushkin M., Bakin O., Barabancova A., Basilskaja O., Belova N., Belyaeva N., Bespalova T., Bisikalova E., Bobretsov A., Bobrov V., Bobrovskyi V., Bochkareva E. et al. 2020. Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Scientific Data 7: 47. DOI: 10.1038/s41597-020-0376-z
Ovchinnikova N.F., Ovchinnikov A.E. 2016. Structural dynamics of aspen stand in dark taiga domain in Western Sayan. Russian Journal of Forest Science 6: 418–425. [In Russian]
Paillet Y., Pernot C., Boulanger V., Debaive N., Fuhr M., Gilg O., Gosselin F. 2015. Quantifying the recovery of old-growth attributes in forest reserves: A first reference for France. Forest Ecology and Management 346: 51–64. DOI: 10.1016/j.foreco.2015.02.037
Parish R., Antos J.A., Ott P.K., Di Lucca C.M. 2010. Snag longevity of Douglas-fir, western hemlock, and western redcedar from permanent sample plots in coastal British Columbia. Forest Ecology and Management 259(3): 633–640. DOI: 10.1016/j.foreco.2009.11.022
Peterken G.F. 1996. Natural woodland: Ecology and conservation in northern temperate regions. Cambridge, UK: Cambridge University Press. 522 p.
Popadyuk R.V., Smirnova O.V., Zaugolnova L.B., Khanina L.G., Bobrovsky M.V., Yanitskaya T.Y. 1999. The Kaluzhskie Zaseki State Nature Reserve. In: O.V. Smirnova, E.S. Shaposhnikov (Eds.): Successions in the Russian nature reserves and the challenge of biodiversity conservation. St. Petersburg: Russian Botanical Society. P. 58–105. [In Russian]
QGIS Development Team. 2020. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Version 3.14. Available from http://qgis.osgeo.org
R Core Team. 2021. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from https://www.R-project.org/
Reed D.D., Liechty H.O., Burton A.J. 1989. A simple procedure for mapping tree locations in forest stands. Forest Science 35(3): 657–662. DOI: 10.1093/forestscience/35.3.657
Rosreestr, GIS-Lab.info. 2021. Open-access data on the borders of the constituent entities of the Russian Federation. Available from https://gis-lab.info/qa/rusbounds-rosreestr.html
Sabatini F.M., Burrascano S., Keeton W.S., Levers C., Lindner M., Pötzschner F., Verkerk P.J., Bauhus J., Buchwald E., Chaskovsky O., Debaive N., Horváth F., Garbarino M., Grigoriadis N., Lombardi F., Duarte I.M., Meyer P., Midteng R., Mikac S., Mikoláš M., Motta R., Mozgeris G., Nunes L., Panayotov M., Ódor P., Ruete A., Simovski B., Stillhard J., Svoboda M., Szwagrzyk J. et al. 2018. Where are Europe's last primary forests? Diversity and Distributions 24(10): 1426–1439. DOI: 10.1111/ddi.12778
Salinas H., Ramirez-Delgado R. 2021. ecolTest: Community Ecology Tests. Available from https://cran.r-project.
org/web/packages/ecolTest/index.html
Sekretenko O.P., Grabarnik P.Y. 2015. Analysis of tree stand horizontal structure using random point field methods. Siberian Journal of Forest Science 3: 32–44. DOI: 10.15372/SJFS20150304 [In Russian]
Semizer-Cuming D., Krutovsky K.V., Baranchikov Y.N., Kjær E.D., Williams C.G. 2019. Saving the world's ash forests calls for international cooperation now. Nature Ecology and Evolution 3(2): 141–144. DOI: 10.1038/s41559-018-0761-6
Sevko O.A., Kotsan V.V. 2020. Analysis of the influence of spatial structure on taxation indicators in complex tree. Proceedings of BSTU 2(235): 16–21. [In Russian]
Shanin V.N., Grabarnik P.Y., Shashkov M.P., Ivanova N.V., Bykhovets S.S., Frolov P.V., Stamenov M.N. 2020. Crown asymmetry and niche segregation as an adaptation of trees to competition for light: conclusions from simulation experiments in mixed boreal stands. Mathematical and Computational Forestry and Natural-Resource Sciences 12(1): 26–49. DOI: 10.5281/zenodo.3759256
Shorohova E., Kneeshaw D., Kuuluvainen T., Gauthier S. 2011. Variability and dynamics of old-growth forests in the circumboreal zone: implications for conservation, restoration and management. Silva Fennica 45(5): 785–806. DOI: 10.14214/sf.72
Sillet S.C., McCune B., Peck J.E., Rambo T.R., Ruchty A. 2000. Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecological Applications 10(3): 789–799. DOI: 10.1890/1051-0761(2000)010[0789:DLOELR]2.0.CO;2
Smirnova O.V. (Ed). 1994. East-European broadleaved forests. Moscow: Nauka. 363 p. [In Russian]
Smirnova O.V., Bobrovskii M.V. 2001. Tree ontogeny and its reflection in the structure and dynamics of plant and soil covers. Russian Journal of Ecology 32(3): 159–163. DOI: 10.1023/A:1011353926083
Smirnova O.V., Bobrovsky M.V., Khanina L.G., Braslavskaya T.Yu., Starodubtseva E.A., Evstigneev O.I., Korotkov V.N., Smirnov V.E., Ivanova N.V. 2017. Nemoral Forests. In: O.V. Smirnova, M.V. Bobrovsky, L.G. Khanina (Eds.): European Russian forests: Their current state and features of their history. Plant and Vegetation 15. Dordrecht: Springer. P. 333–476. DOI: 10.1007/978-94-024-1172-0_5
Smirnova O.V., Bobrovsky M.V., Popadiouk R.V., Shashkov M.P., Khanina L.G., Ivanova N.V., Shanin V.N., Stamenov M.N., Chumachenko S.I. 2021. Long-term tree inventory dataset from the permanent sampling plot in the broadleaved forest of European Russia. Occurrence dataset. Version 1.4. Available from https://doi.org/10.15468/mu99hf
Smirnova O.V., Chistyakova A.A., Popadyuk R.V. 1989. Population mechanisms of forest coenosis dynamics. Nauchnye doklady Vysshej Shkoly. Biologicheskie nauki 11: 48–58. [In Russian]
Smirnova O.V., Chistyakova A.A., Popadyuk R.V., Evstigneev O.I., Korotkov V.N., Mitrofanova M.V., Ponomarenko E.V. 1990 Population organization of the vegetation cover of forest areas (on the example of deciduous forests of the European part of the USSR). Pushchino: Scientific Center of Biological Research of AS USSR. 92 p. [In Russian]
Smirnova O.V., Popadyuk R.V., Chistyakova A.A. 1988. Population methods in the determination of the minimal area of a forest coenosis. Botanicheskii Zhurnal 71(10): 1423–1433. [In Russian]
Spracklen B., Spracklen D.V. 2021. Determination of structural characteristics of old-growth forest in ukraine using spaceborne LiDAR. Remote Sensing 13(7): 1233. DOI: 10.3390/rs13071233
Straw N.A., Williams D.T., Kulinich O., Gninenko Y.I. 2013. Distribution, impact and rate of spread of emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae) in the Moscow region of Russia. Forestry 86(5): 515–522. DOI: 10.1093/forestry/cpt031
Thomas E., Alcazar C., Moscoso H.L.G., Osorio L.F., Salgado B., Gonzalez M., Parra M., Bozzano M., Loo J., Jalonen R., Ramirez W. 2017. The importance of species selection and seed sourcing in forest restoration for enhancing adaptive potential to climate change: Colombian tropical dry forest as a model. CBD Technical series 89: 122–134.
Vanclay J.K., Skovsgaard J.P., Hansen C.P. 1995. Assessing the quality of permanent sample plot databases for growth modelling in forest plantations. Forest Ecology and Management 71(3): 177–186. DOI: 10.1016/0378-1127(94)06097-3
Vera F.W.M. 2000. Grazing ecology and forest history. Oxon-NY: CABI Publishing. 506 p.
Veselov V.M., Pribylskaya I.R., Mirzeabasov O.A. 2021. World Data Center (RIHMI-WDC), Roshydromet. Available from http://aisori-m.meteo.ru/waisori
Wieczorek J., Bloom D., Guralnick R., Blum S., Döring M., Giovanni R., Robertson T., Vieglais D. 2012. Darwin Core: An evolving community-developed biodiversity data standard. PLoS ONE 7(1): e29715. DOI: 10.1371/journal.pone.0029715
Wiegand T., Grabarnik P., Stoyan D. 2016. Envelope tests for spatial point patterns with and without simulation. Ecosphere 7(6): e01365. DOI: 10.1002/ecs2.1365
Williams G.M., Nelson A.S. 2018. Spatial variation in specific leaf area and horizontal distribution of leaf area in juvenile western larch (Larix occidentalis Nutt.). Trees 32(6): 1621–1631. DOI: 10.1007/s00468-018-1738-4
Yamakura T., Kanzaki M., Itoh A., Ohkubo T., Ogino K., Chai O.K.E., Lee H.S., Ashton P.S. 1995. Topography of a Large-Scale Research Plot established within a Tropical Rain Forest at Lambir, Sarawak. Tropics 5(1): 41–56. DOI: 10.3759/tropics.5.41