Статья

Название статьи МНОГОЛЕТНЯЯ ДИНАМИКА МОРФОГЕНЕТИЧЕСКИХ ПОКАЗАТЕЛЕЙ НАЗЕМНОГО МОЛЛЮСКА CEPAEA VINDOBONENSIS (GASTROPODA, PULMONATA, HELICIDAE) В ПАМЯТНИКЕ ПРИРОДЫ «БЕКАРЮКОВСКИЙ БОР» (РОССИЯ)
Авторы

Эдуард Анатольевич Снегин, д.б.н., директор научно-исследовательского центра геномной селекции Белгородского государственного национального исследовательский университета (308015, Россия, Белгородская область, г. Белгород, ул. Победы, д. 85); iD ORCID: https://orcid.org/0000-0002-7574-6910; e-mail: snegin@bsu.edu.ru
Александра Юрьевна Тищенко, м.н.с. научно-исследовательского центра геномной селекции Белгородского государственного национального исследовательский университета (308015, Россия, Белгородская область, г. Белгород, ул. Победы, д. 85); iD ORCID: https://orcid.org/0000-0003-1838-7816; e-mail: tishchenko_ayu@bsu.edu.ru

Библиографическое описание статьи

Снегин Э.А., Тищенко А.Ю. 2021. Многолетняя динамика морфогенетических показателей наземного моллюска Cepaea vindobonensis (Gastropoda, Pulmonata, Helicidae) в памятнике природы «Бекарюковский бор» (Россия) // Nature Conservation Research. Заповедная наука. Т. 6(3). С. 58–72. https://dx.doi.org/10.24189/ncr.2021.038

Рубрика Оригинальные статьи
DOI https://dx.doi.org/10.24189/ncr.2021.038
Аннотация

В памятнике природы «Бекарюковский бор» обитает одна из самых многочисленных в северо-восточной части ареала периферических популяций охраняемого наземного моллюска Cepaea vindobonensis. За последние 20 лет были проанализированы изменения в морфогенетической структуре его популяции и ее связь с микроклиматическими факторами среды. Результаты проведенного теста Краскела-Уоллиса конхиометрических признаков показали достоверную (p < 0.05) дифференциацию по всем промерам между исследуемыми годами. Наряду с этим была выявлена достоверная корреляция между параметрами раковины адультных особей и некоторыми климатическими характеристиками как средними, вычисленными за четыре года, так и данными по климату в период формирования раковин на ювенильной стадии. Подобная зависимость, вероятно, указывает на эпигенетическую природу адаптации популяции к среде обитания. Расчет среднего числа фенотипов (по Животовскому) показал наименьший уровень в 2020 г. (µ = 1.44 ± 0.20), а наибольший – в 2002 г. (µ = 2.19 ± 0.21). Для выяснения степени жизнеспособности популяции нами также был проведен анализ ее генетической структуры на основе локусов изоферментов эстераз. Согласно полученным результатам, наибольшие изменения частот аллелей наблюдались в локусе EST8, где отмечено достоверное снижение частоты аллеля EST8-2 в период с 2006 г. по 2011 г. (p < 0.05) и его отсутствие в популяции в 2012–2020 гг. При этом исследуемая популяция в 2020 г. стала мономорфной по аллелю EST8-3. Предполагается, что переход в гомозиготное состояние по указанному локусу помимо генетико-автоматических процессов, вероятно, вызван и биотопическими изменениями. Кроме того, в 2020 г. был также отмечен существенный дефицит гетерозигот (коэффициент инбридинга F = 0.517 ± 0.395). Оценка эффективной численности, рассчитанная на основе темпорального метода, оказалась равной Ne = 13.52. Проведенный прогноз длительности существования популяции на основе генетических данных показал значение около 100 лет. Полученные результаты говорят о низкой степени жизнеспособности исследуемой краевой популяции C. vindobonensis, что может привести к ее вымиранию, особенно в случае изменений условий среды. Вместе с тем сохранение природоохранных мероприятий в районе исследования позволит избежать подобного сценария развития событий.

Ключевые слова

генетическая структура, конхиометрические признаки, периферическая популяция, популяционная динамика, уязвимый вид, эффективная численность

Информация о статье

Поступила: 15.03.2021. Исправлена: 08.06.2021. Принята к опубликованию: 16.06.2021.

Полный текст статьи
Список цитируемой литературы

Вычалковская Н.В. 2012. Некоторые особенности распределения частот размерно-возрастных классов в популяциях Brephulopsis cylindrica // Наукові записки Тернопільського національного педагогічного університету ім. Володимира Гнатюка. Сер. Біологія. Вып. 2(51). С. 52–53.
Гураль-Сверлова Н.В. 2013. Зависимость размеров, формы и окраски раковин в популяциях австрийской цепеи Cераеа vindobonensis (Gastropoda, Pulmonata, Helicidae) из разных регионов Украины // Природничий альманах (біологічні науки). Вып. 19. С. 75–82.
Гураль-Сверлова Н.В., Мартынов В.В. 2007. Конхологические особенности популяций Cepaea vindobonensis (Gastropoda, Pulmonata, Helicidae) на территории Донецкой области // Проблемы экологии и охраны природы техногенного региона. Т. 7. С. 85–91.
Животовский Л.А. 1991. Популяционная биометрия. М.: Наука. 271 с.
Красная книга Белгородской области. Редкие и исчезающие растения, лишайники, грибы и животные. Белгород: ИД «БелГУ», 2019. 668 с.
Красная книга Российской Федерации (растения и грибы). М.: Товарищество научных изданий КМК, 2008. 855 с.
Лакин Г.Ф. 1990. Биометрия. М.: Высшая школа. 350 с.
Мильков Ф.Н. 1950. Лесостепь Русской равнины: опыт ландшафтной характеристики. М.: Изд-во АН СССР. 292 с.
Сверлова Н.В. 2007. Особенности фенетической структуры интродуцированных популяций Cepaea nemoralis // Фальцфейнівські читання. Херсон: ПП Вишемирський. С. 287–292.
Синявская А.С. 2009. Фенетическая структура Cepaea nemoralis в формирующемся ареале // Конференция «Научно-исследовательская работа студентов». Брест: БрГУ. С. 24–26.
Снегин Э.А. 2012. Пространственные и временные аспекты эколого-генетической структуры популяций беспозвоночных животных (на примере наземных моллюсков и насекомых юга Среднерусской возвышенности). Дисс. … докт. биол. наук. Белгород. 394 с.
Хлус Л.М. 2004. Морфометрична структура природних популяцій Cepaea vindobonensis Fer. на теренах України // Науковий вiсник Чернiвецького унiверситету. Вып. 223. С. 83–88.
Шилейко А.А. 1978. Наземные моллюски надсемейства Helicoidea. Фауна СССР. Т. 3(6). Л.: Наука. 384 с.
Arnaud-Haond S., Teixeira S., Massa S.I., Billot C., Saenger P., Coupland G., Serrão E.A. 2006. Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations // Molecular Ecology. Vol. 15(12). P. 3515–3525. DOI: 10.1111/j.1365-294X.2006.02997.x
Barrett R.D., Schluter D. 2008. Adaptation from standing genetic variation // Trends in Ecology and Evolution. Vol. 23(1). P. 38–44. DOI: 10.1016/j.tree.2007.09.008
Bengtson S.A., Nilsson A., Nordström S., Rundgren S. 1979. Selection for adult shell size in natural populations of the landsnail Cepaea hortensis (Müll.) // Annales Zoologici Fennici. Vol. 16(3). P. 187–194.
Berry A.J. 1963. Growth and variation of the shell in certain Malayan limestone hill snails // Journal of Molluscan Studies. Vol. 35(5). P. 203–206. DOI: 10.1093/oxfordjournals.mollus.a064919
Buria H., Stahel W. 1983. Altitudinal variation in Arianta arbustorum (Mollusca, Pulmonata) in the Swiss Alps // Genetica. Vol. 62(2). P. 95–108. DOI: 10.1007/BF00116631
Cain A.J., Cook L.M. 1989. Persistence and extinction in some Cepaea populations // Biological Journal of the Linnean Society. Vol. 38(2). P. 183–190. DOI: 10.1111/j.1095-8312.1989.tb01573.x
Cameron R.A.D. 1992. Change and stability in Cepaea populations over 25 years: a case of climatic selection // Proceedings of the Royal Society B: Biological Sciences. Vol. 248(1322). P. 181–187. DOI: 10.1098/rspb.1992.0060
Cameron R.A.D., Pokryszko B.M. 2008. Variation in Cepaea populations over 42 years: climate fluctuations destroy a topographical relationship of morph-frequencies // Biological Journal of the Linnean Society. Vol. 95(1). P. 53–61. DOI: 10.1111/j.1095-8312.2008.01042.x
Carr P.D., Ollis D.L. 2009. Alpha/beta hydrolase fold: an update // Protein and Peptide Letters. Vol. 16(10). P. 1137–1148. DOI: 10.2174/092986609789071298
Crow J.F., Kimura M. 1970. An introduction to population genetics theory. New York: Harpers and Row. 591 p.
Diver C. 1939. Aspects of the study of variation in snails // Journal of Conchology. Vol. 21(4–5). P. 91–141.
Eckert C.G., Samis K.E., Lougheed S.C. 2008. Genetic variation across species' geographical ranges: the central-marginal hypothesis and beyond // Molecular Ecology. Vol. 17(5). P. 1170–1188. DOI: 10.1111/j.1365-294X.2007.03659.x
Gaal Ö., Medgyesi G.A., Vereczkey L. 1980. Electrophoresis in the separation of biological macromolecules. Chichester, UK: John Wiley & Sons; Budapest: Akademiai Kiado. 422 p.
Goodfriend G.A. 1986. Variation in Land-snail Shell form and Size and its Causes: a Review // Systematic Biology. Vol. 35(2). P. 204–223. DOI: 10.1093/sysbio/35.2.204
Gural-Sverlova N.V., Gural R.I. 2021. Shell banding and colour polymorphism of introduced snail Cepaea hortensis (Gastropoda, Pulmonata, Helicidae) from some parts of Eastern Europe // Ruthenica. Vol. 31(2). P. 59–76.
Harmon J.P., Moran N.A., Ives A.R. 2009. Species response to environmental change: impacts of food web interactions and evolution // Science. Vol. 323(5919). P. 1347–1350. DOI: 10.1126/science.1167396
Hoffmann A.A., Sgrò C.M. 2011. Climate change and evolutionary adaptation // Nature. Vol. 470(7335). P. 479–485. DOI: 10.1038/nature09670
Ivanter E.V. 2017. Revising the ecological concept of peripheral populations // Russian Journal of Ecology. Vol. 48(1). P. 81–85. DOI: 10.1134/S1067413617010076
Johnson M.S. 2011. Thirty-four years of climatic selection in the land snail Theba pisana // Heredity. Vol. 106(5). P. 741–748. DOI: 10.1038/hdy.2010.114
Kajtoch Ł., Davison A., Grindon A., Deli T., Sramkó G., Gwardjan M., Kramarenko S., Mierzwa-Szymkowiak D., Ruta R., Ścibior R., Tóth J.P., Wade C., Kolasa M., Egorov R.V., Fehér Z. 2017. Reconstructed historical distribution and phylogeography unravels non-steppic origin of Caucasotachea vindobonensis (Gastropoda: Helicidae) // Organisms Diversity and Evolution. Vol. 17(3). P. 679–692. DOI: 10.1007/s13127-017-0337-3
Kramarenko S.S. 2016. Patterns of spatio-temporal variation in land snails: a multi-scale approach // Folia Malacologica. Vol. 24(3). P. 112–177. DOI: 10.12657/folmal.024.008
Kramarenko S.S., Khokhutkin I.M., Grebennikov M.E. 2007. Specific features of phenetic structure of the terrestrial snail Cepaea vindobonensis (Pulmonata; Helicidae) in urbanized and natural populations // Russian Journal of Ecology. Vol. 38(1). P. 39–45. DOI: 10.1134/S1067413607010079
Krimbas C.B., Tsakas S. 1971. The genetics of Dacus oleae. V. Changes of esterase polymorphism in a natural population following insecticide control-selection or drift? // Evolution. Vol. 25(3). P. 454–460. DOI: 10.1111/j.1558-5646.1971.tb01904.x
Lang A. 1906. Über die Mendelschen Gesetze, Art- und Varietätenbildung, Mutation und Variation, insbesondere bei unsern Hain- und Garetnschnecken // Verhandlungen der Schweizerischen Naturforschenden Gesellschaft in Luzern. Luzern. P. 209–254.
Makeeva V.M., Belokon M.M., Malyuchenko O.P. 2005. Estimating the gene pool condition in natural populations of invertebrates in the fragmented landscape of Moscow and Moscow region with special reference to bush snail Bradybaena fruticum Müll. // Russian Journal of Genetics. Vol. 41(11). P. 1230–1244. DOI: 10.1007/s11177-005-0224-4
Mayr E. 1965. Animal Species and Evolution. London: Oxford University Press. 797 p.
Murray J., Clarke B. 1978. Change of gene frequency in Cepaea nemoralis over fifty years // Malacologia. Vol. 17. P. 317–330.
Nei M., Tajima F. 1981. Genetic drift and estimation of effective population size // Genetics. Vol. 98(3). P. 625–640.
Ożgo M., Komorowska A. 2009. Shell banding polymorphism in Cepaea vindobonensis in relation to habitat in southeastern Poland // Malacologia. Vol. 51(1). P. 81–88. DOI: 10.4002/040.051.0105
Ożgo M., Schilthuizen M. 2012. Evolutionary change in Cepaea nemoralis shell colour over 43 years // Global Change Biology. Vol. 18(1). P. 74–81. DOI: 10.1111/j.1365-2486.2011.02514.x
Parmar T.K., Rawtani D., Agrawal Y.K. 2016. Bioindicators: the natural indicator of environmental pollution // Frontiers in Life Science. Vol. 9(2). P. 110–118. DOI: 10.1080/21553769.2016.1162753
Peakall R., Smouse P.E. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research // Molecular Ecology Notes. Vol. 6(1). P. 288–295. DOI: 10.1111/j.1471-8286.2005.01155.x
Peake J.F. 1973. Species isolation in sympatric populations of the genus Diplommatina (Gastropoda, Prosobranchia, Cyclophoridae, Diplommatininae) // Malacologia. Vol. 14. P. 303–312.
Pettitt C. 1977. An investigation of variation in shell form in Discula (Hystricella) turricula (Love, 1831) (Pulmonata; Helicacea) // Journal of Conchology. Vol. 29. P. 147–150.
Pokryszko B.M., Maltz T.K., Cameron R.A. 2004. Cepaea vindobonensis (Férussac, 1821) in the Pieniny Mts // Folia Malacologica. Vol. 12(3). P. 153–156. DOI: 10.12657/folmal.012.013
Provan J., Maggs C.A. 2011. Unique genetic variation at a species' rear edge is under threat from global climate change // Proceedings of the Royal Society B: Biological Sciences. Vol. 279(1726). P. 39–47. DOI: 10.1098/rspb.2011.0536
Rensch B. 1932. Uber die Abhingigkeit der Grosse, des relativen Gewichtes und der Oberflachen struktur der Landschneckenschalen von Umwelts-faktoren (Okologische Molluskenstudien I.) // Zeitschrift für Morphologie und Ökologie der Tiere. Vol. 25. P. 757–807.
Richardson B.J., Baverstock P.R., Adams M. 2012. Allozyme electrophoresis: a handbook for animal systematics and population studies. Sydney and London: Academic Press. 410 p.
Rosin Z.M., Kwieciński Z., Lesicki A., Skórka P., Kobak J., Szymańska A., Osiejuk T.S., Kałuski T., Jaskulska M., Tryjanowski P. 2018. Shell colour, temperature, (micro)habitat structure and predator pressure affect the behaviour of Cepaea nemoralis // Science of Nature. Vol. 105(5–6). Article: 35. DOI: 10.1007/s00114-018-1560-2
Siepielski A.M., DiBattista J.D., Carlson S.M. 2009. It's about time: the temporal dynamics of phenotypic selection in the wild // Ecology Letters. Vol. 12(11) P. 1261–1276. DOI: 10.1111/j.1461-0248.2009.01381.x
Snegin E.A. 2011. Assessment of the state of population gene pools of terrestrial mollusks in conditions of influence of ore dressing combines from the example Bradybaena fruticum Müll. (Gastropoda, Pullmonata) // Russian Journal of Genetics: Applied Research. Vol. 1(5). P. 379–389. DOI: 10.1134/s2079059711050133
Snegin E.A. 2012. The genetic structure of model species populations of terrestrial mollusks in conditions of urbanized landscape using the example of Chondrula tridens Müll (Gastropoda, Pulmonata) // Russian Journal of Genetics: Applied Research. Vol. 2(2). P. 160–170. DOI: 10.1134/S2079059712020128
Snegin E.A., Snegina E.A. 2018. Genetic Structure of Populations of Specially Protected Mollusk Cepaea vindobonensis (Mollusca, Gastropoda, Pulmonata) in the Northeastern Part of the Modern-Day Range // Russian Journal of Genetics: Applied Research. Vol. 8(2). P. 159–171. DOI: 10.1134/S2079059718020090
Soulé M.E. 1980. Thresholds for Survival: Maintaining Fitness and Evolutionary Potential // Conservation Biology: An Evolutionary-Ecological Perspective / M.E. Soulé, B.M. Wilcox (Eds.). Sunderland: Sinauer. P. 151–170.
Staikou A.E. 1998. Aspects of life cycle, population dynamics, growth and secondary production of the pulmonate snail Cepaea vindobonensis (Férussac, 1821) in northern Greece // Journal of Molluscan Studies. Vol. 64(3). P. 297–308. DOI: 10.1093/mollus/64.3.297
Staikou A.E. 1999. Shell temperature, activity and resistance to desiccation in the polymorphic land snail Cepaea vindobonensis // Journal of Molluscan Studies. Vol. 65(2). P. 171–184. DOI: 10.1093/mollus/65.2.171
Sverlova N. 2004. Landschnecken-Farbpolymorphismus aus physikalischen Gründen (Gastropoda: Pulmonata: Stylommatophora) // Malakologische Abhandlungen Museum für Tierkunde Dresden. Vol. 22. P. 131–145.
Thomas C.D., Bodsworth E.J., Wilson R.J., Simmons A.D., Davies Z.G., Musche M., Conradt L. 2001. Ecological and evolutionary processes at expanding range margins // Nature. Vol. 411(6837). P. 577–581. DOI: 10.1038/35079066
Tillier S. 1981. Clines, convergence and character displacement in New Caledonian diplommatinids (land prosobranchs) // Malacologia. Vol. 21(1–2). P. 177–208.
Wall S., Carter M.A., Clarke B. 1980. Temporal changes of gene frequencies in Cepaea hortensis // Biological Journal of the Linnean Society. Vol. 14(3–4). P. 303–317. DOI: 10.1111/j.1095-8312.1980.tb00111.x
Wolda H. 1969. Genetics of polymorphism in the land snail, Cepaea nemoralis // Genetica. Vol. 40(1). P. 475–502. DOI: 10.1007/BF01787373