Irina Y. Kudrevatykh, PhD, Researcher of the Institute of Physicochemical and Biological Problems of Soil Science of RAS (142290, Russia, Pushchino, Institytskaya Street, 2); iD ORCID:; e-mail:
Anna P. Geraskina, PhD, Senior Researcher of The Center for Problems of Ecology and Productivity of Forests of RAS (117997, Russia, Moscow, Profsoyuznaya Street 84/32); iD ORCID:; e-mail:

Reference to article

Kudrevatykh I.Yu., Geraskina A.P. 2021. Comparison of structure and chemical composition of ground cover and soils of fir-spruce forests in Pechora-Ilych State Nature Reserve, Northern Urals. Nature Conservation Research 6(2): 80–92.

Section Research articles

Bilberry-feathermoss (BFM) fir-spruce forests on podzols and boreal tall herb (BTH) fir-spruce forests on brown soils were studied in the Pechora-Ilych State Nature Reserve, Northern Urals. In each type of forest, 50 × 50-cm2 monoliths were taken at the root zone depth (n = 54 and n = 45 for BTH and BFM, respectively). Living plants of herbs, dwarf shrubs, and mosses were taken from the monoliths for the subsequent determination of species and affiliation of the latter to functional groups. Profile pits with mixed sample selection from each soil horizon were also made in three replications on the same sites. Concentrations of Mg, Al, P, S, K, Ca, Mn, Fe, and Zn were measured in plant and soil samples using the X-ray fluorescence analysis. It was found that herbs form the bulk of the ground cover of the studied BTH fir-spruce forest. The boreal species proportion in the flora of these communities, if compared to that in the BFM flora, is 28% lower. On the contrary, the nemoral and nitrophilous species proportions are 20% and 14% higher, respectively. Mg, Zn, Mn, and Al are accumulated in the shoots and roots of plants of both forest types, whereas the content of Ca, K, S, and P is higher only in the roots. The chemical composition of plants is dependent on both their functional group and forest type they inhabit. The highest levels of Cа, K, P, and Mg were found in boreal low herbs as well as in tall herbs in both forest types. The content of Al, Fe, Zn, Mn, and S was the highest in the BTH tall herbs. Boreal low herbs possess higher levels of K, S, Mg, P, Zn, Fe, and Al content in the BTH fir-spruce forest; the same is found for Mn content in boreal shrubs. The content of P, S, Al, Ca, Fe, and Mn varies in meadow grasses of the fir-spruce forest, while tall herbs, both boreal and nemoral, display similar levels of Al, Fe, Mn, and Mg content together with boreal low herbs. The comparison of soil (O and A horizons) chemical composition in the forest types studied reveals that the content of Ca, Mg, K, Zn, P, and S is 50% higher in brown soils, and the content of Al and Fe is higher in podzols. The latter fact originates mainly due to high amounts of the ground cover litter fall, rich in these elements.


bilberry-feathermoss forest, boreal tall-herb forest, Endogleyic Cambisol, plant functional group, Rustic Podzols

Artice information

Received: 23.07.2020. Revised: 30.03.2021. Accepted: 01.04.2021.

The full text of the article

Aleinikov A.A. 2019. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: possible anthropogenic causes and long-term effects. Nature Conservation Research 4(Suppl.1): 21–34. DOI: 10.24189/ncr.2019.033
Aleinikov A.A., Smirnov N.S., Smirnova O.V. 2016. Tall-herb boreal forests on North Ural. Russian Journal of Ecosystem Ecology 1(3). DOI: 10.21685/2500-0578-2016-3-3
Alexeeva-Popova N.V., Drozdova I.V. 2010. Specific Features of Mineral Composition of Plants Growing on Basic Rocks in Polar Urals. Botanicheskii Zhurnal 95(11): 1606–1622. [In Russian]
Alexeeva-Popova N.V., Drozdova I.V. 2013. Micronutrient composition of plants in the Polar Urals under contrasting geochemical conditions. Russian Journal of Ecology 44(2): 100–107. DOI: 10.1134/S1067413613020033
Artemkina N.A., Orlova M.A., Lukina N.V. 2016. Chemical composition of Juniperus sibirica needles (Cupressaceae) in the forest–tundra ecotone, the Khibiny Mountains. Russian Journal of Ecology 47(4): 321–328. DOI: 10.1134/S106741361604007X
Bäck J., Turunen M., Ferm A., Huttunen S. 1997. Needle Structures and Epiphytic Microflora of Scots Pine (Pinus sylvestris L.) under Heavy Ammonia Deposition from Fur Farming. Water, Air and Soil Pollution 100(1): 119–132. DOI: 10.1023/A:1018308008769
Baranovskaya N.V., Chernenkaya E.V. 2015. Features of accumulation of chemical elements in blueberries (Vaccinium myrtillus) in Western Siberia. Fundamental Research 2: 299–306. [In Russian]
Bazilevich N.I., Titlyanova A.A., Smirnov V.V., Rodin L.E., Nechayeva N.T., Levin F.I. 1978. Methods of studying biological cycle in various natural zones. Moscow: Mysl. 183 p. [In Russian]
Bobkova K.S., Robakidze E.A., Galenko E.P. 2010. Health status of the stands and the young growth in the native spruce forests at the Ural foothills, the upper reaches of the Pechora River. Contemporary Problems of Ecology 3(2): 196–202 DOI: 10.1134/S1995425510020098
Bobretsov A.V., Teplov V.V. 2000. Natural conditions of Pechora-Ilych Reserve. In: Patterns of half a century of biota dynamics in virgin taiga of Northern Cis-Urals. Syktyvkar. P. 6–21. [In Russian]
Bobretsov A.V., Tertitsa T.K., Teplova V.P. 2017. The impact of climate change on the phenology of plants and animals of the South-Eastern part of the Komi Republic (the Pechora-Ilych Biosphere Reserve). Problems of Environmental Monitoring and Ecosystem Modeling 28(4): 74–94. [In Russian]
Bobrovsky M.V., Spai T.P. 2017. History of fires in forests of the foothill area of Pechora-Ilych State Nature Reserve according to dendrochronological data In: Boreal forests: state, dynamics, ecosystem services. Petrozavodsk: Karelian Research Centre of RAS. P. 36–38. [In Russian]
Broadley M.R., Bowen H.C., Cotterill H.L., Hammond J.P., Meacham M.C., Mead A., White P.J. 2003. Variation in the shoot calcium content of angiosperms. Journal of Experimental Botany 54(386): 1431–1446. DOI: 10.1093/jxb/erg143
Cadotte M.W. 2013. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proceedings of the National Academy of Sciences of the United States of America 110(22): 8996–9000. DOI: 10.1073/pnas.1301685110
Cardinale B.J., Duffy J.E., Gonzales A., Hooper D.U., Perrings C., Venaill P., Narwani1 A., Mace G.M., Tilman D., Wardle D.A., Kinzig A.P., Daily G.C., Loreau M., Grace J.B., Larigauderie A., Srivastava D.S., Naeem S. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67. DOI: 10.1038/nature11148
Cardwell A.J., Hawker D.W., Greenway M. 2002. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48(7): 653–663. DOI: 10.1016/S0045-6535(02)00164-9
Ciccarese L., Mattsson A., Pettenella D. 2012. Ecosystem services from forest restoration: thinking ahead. New Forests 43(5–6): 543–560. DOI: 10.1007/s11056-012-9350-8
Cornelissen J.H., van Bodegom P.M., Aerts R., Callaghan T.V., van Logtestijn R.S., Alatalo J., Chapin F.S., Gerdol R., Gudmundsson J., Gwynn-Jones D., Hartley A.E., Hik D.S., Hofgaard A., Jуnsdуttir I.S., Karlsson S., Klein J.A., Laundre J., Magnusson B., Michelsen A., Molau U., Onipchenko V.G., Quested H.M., Sandvik S.M., Schmidt I.K., Shaver G.R., Solheim B., Soudzilovskaia N.A., Stenström A., Tolvanen A., Totland Ø. et al. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters 10(7): 619–627. DOI: 10.1111/j.1461-0248.2007.01051.x
Degteva S.V., Lapteva E.M. (Eds.). 2013. Soils and soil cover of Pechora-Ilych State Nature Reserve (Northern Urals). Syktyvkar: IB Komi Science Center, UB RAS. 328 p. [In Russian]
Degteva S.V., Ponomarev V.I., Eisenman S.W., Dushenkov V. 2015. Striking the balance: Challenges and perspectives for the protected areas network in northeastern European Russia. Ambio 44(6): 473–490. DOI: 10.1007/s13280-015-0636-x
Finér L., Mannerkoski H., Piirainen S., Starr M. 2003. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. Forest Ecology and Management 174(1–3): 51–63. DOI: 10.1016/S0378-1127(02)00019-1
Fismes J., Echevarria G., Leclerc-Cessac E., Morel J.L. 2005. Uptake and Transport of Radioactive Nickel and Cadmium into Three Vegetables after Wet Aerial Contamination. Journal of Environmental Quality 34(5): 1497–1507. DOI: 10.2134/jeq2004.0274
Gaston K.J. 2010. Valuing common species. Science 327(5962): 154–155. DOI: 10.1126/science.1182818
Hilli S. 2013. Significance of litter production of forest stands and ground vegetation in the formation of organic matter and storage of carbon in boreal coniferous forests. In: P. Merilä, S. Jortikka (Eds.): Forest Condition Monitoring in Finland – National Report. Helsinki: The Finnish Forest Research Institute. Available from
Ilchukov S.V. 2010. Landscapes of Pechora-Ilych Biosphere Reserve. Proceedings of the Pechora-Ilych State Nature Reserve 16: 68–83. [In Russian]
Ilyin B.V. 1985. Elemental chemical composition of plants. Novosibirsk: Nauka. 129 p. [In Russian]
Jurevics A., Peichl M., Olsson B.A., Strцmgren M., Egnell G. 2016. Slash and stump harvest have no general impact on soil and tree biomass C pools after 32–39 years. Forest Ecology and Management 371: 33–41. DOI: 10.1016/j.foreco.2016.01.008
Kalra Y.P., Maynard D.G. 1991. Methods manual for forest soil and plant analysis. Information Report NOR-X-319E. Alberta: Ministry of Supply and Services Canada. 116 p.
Kanev V.A., Degteva S.V., Poletaeva I.I. 2014. Flora of vascular plants of the Man-Hambo Ridge (Northern Urals, Pechora-Ilych State Nature Reserve). Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences 3(19): 75–82. [In Russian]
Khanina L.G., Bobrovsky M.V., Smirnov V.E., Grozovskaya I.S., Romanov M.S., Lukina N.V., Isaeva L.G. 2015. Ground Vegetation Modeling through Functional Species Groups and Patches in the Forest Floor. Mathematical Biology and Bioinformatics 10(1): 15–33. DOI: 10.17537/2015.10.15 [In Russian]
Karpov V.G. 1983. Regulation factors of spruce forest ecosystems. Leningrad: Nauka. 317 p. [In Russian]
Kovda V.A. 1985. Biogeochemistry of Soil Cover. Moscow: Nauka. 264 p. [In Russian]
Kreuzwieser J., Gessler A. 2010. Global climate change and tree nutrition: influence of water availability. Tree Physiology 30(9): 1221–1234. DOI: 10.1093/treephys/tpq055
Ksenzhek O., Volkov A. 1998. Plant Energetics. New York: Academic Press. 389 p.
Lavrenko A.N., Ulle Z.G., Serditov N.P. 1995. Flora of the Pechora-Ilych Biosphere Reserve. Saint Petersburg: Nauka. 256 p. [In Russian]
Lehtonen A., Heikkinen J. 2016. Uncertainty of upland soil carbon sink estimate for Finland. Canadian Journal of Forest Research 46(3): 310–322. DOI: 10.1139/cjfr-2015-0171
Li X., Han S., Zhang Y. 2007. Indirect effects of precipitation variation on the decomposition process of Mongolian oak (Quercus mongolica) leaf litter. Frontiers of Forestry in China 2: 417–423. DOI: 10.1007/s11461-007-0066-4
Likhanova N.V., Bobkova K.S. 2013. Alteration of macro and microelement content in the plants of ground cover vegetation in the middle taiga spruce forests after clear felling. Rastitelnye Resursy 49(2): 223–232. [In Russian]
Loboda T.V, Chen D. 2017. Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia. Global Change Biology 23(1): 138–153. DOI: 10.1111/gcb.13349
Lugovaya D.L., Smirnova O.V., Zaprudina M.V., Aleynikov A.A., Smirnov V.E. 2013. Micromosaic structure and phytomass of ground vegetation in main types of dark conifer forests in the Pechora-Ilych State Nature Reserve. Russian Journal of Ecology 44(1): 1–8. DOI: 10.1134/S1067413613010086
Lukac M., Calfapietra C., Lagomarsino A., Loreto F. 2010. Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiology 30(9): 1209–1220. DOI: 10.1093/treephys/tpq040
Lukina N.V., Tikhonova E.V., Danilova M.A., Bakhmet O.V., Kryshen A.M., Tebenkova D.N., Kuznetsova A.I., Smirnov V.E., Braslavskaya T.Yu., Gornov A.V., Shashkov M.P., Knyazeva S.V., Kataev A.D., Isaeva L.G., Zukert N.V. 2019. Associations between forest vegetation and the fertility of soil organic horizons in northwestern Russia. Forest Ecosystems 6: 34. DOI: 10.1186/s40663-019-0190-2
Matveeva R.N., Bratilova N.P., Kubrina S.M., Shcherba Yu.E. 2019. Concentration of trace elements in seeds and needles of Siberian pine of various geographic origin. Russian Journal of Forest Science 6: 567–572. DOI: 10.1134/S0024114819060056
Nabuurs G., Lindner M., Verkerk P.J., Gunia K., Deda P., Michalak R., Grassi G. 2013. First signs of carbon sink saturation in European forest biomass. Nature Climate Change 3: 792–796. DOI: 10.1038/nclimate1853
Novotný R., Buriánek V., Šrámek V., Hůnová I., Skořepová I., Zapletal M., Lomský B. 2016. Nitrogen deposition and its impact on forest ecosystems in the Czech Republic – change in soil chemistry and ground vegetation. iForest 10(1): 48–54. DOI: 10.3832/ifor1847-009
Osipov A.F., Manova S.O., Bobkova K.S. 2014. Reserves and element composition in ground cover plants in the pine forests of post-fire origin (the Komi Republic). Rastitelnye Resursy 50(1): 3–11. [In Russian]
Perevoznikova V.D., Baranchikov Yu.N. 2002. Structure of land phytomass stocks in fresh silkworms of fir taiga of the Lower Angara. In: Entomological Studies in Siberia. Vol. 2. Krasnoyarsk: KF SO REO. P. 166–180. [In Russian]
Robakidze E.A., Bobkova K.S., Naimushina S.I. 2020. Elemental composition of dominating plant species in different-aged middle-taiga pine forests of Komi Republic. Rastitelnye Resursy 56(1): 53–65. DOI: 10.31857/S0033994620010045 [In Russian]
Semikolennykh A.A., Bovkunov A.D., Aleinikov A.A. 2013. Soils and the soil cover of the taiga zone in the Northern Urals (upper reaches of the Pechora River). Eurasian Soil Science 46(8): 821–832. DOI: 10.1134/S1064229313080085
Seregin A.P. 2014. Floristic records from Man-Pupu-Nyor Range and adjacent paths (Pechora-Ilych Reserve, Komi Republic, Russia). Phytodiversity of Eastern Europe 8(2): 97–105. [In Russian]
Shevchenko N.E., Smirnova O.V. 2017. Refugia for the floristic diversity of Northern Ural dark conifer forests as markers of natural vegetation of the eastern European Taiga. Russian Journal of Ecology 48(3): 212–218. DOI: 10.1134/S1067413617030183
Shorohova E., Kuuluvainen T., Kangur A., Jõgiste K. 2009. Natural stand structures, disturbance regimes and successional dynamics in the Eurasian boreal forests: a review with special reference to Russian studies. Annals of Forest Science 66: 201. DOI: 10.1051/forest/2008083
Shtangeeva I., Alber D., Bukalis G., Stanik B., Zepezauer F. 2009. Multivariate statistical analysis of nutrients and trace elements in plants and soil from northwestern Russia. Plant and Soil 322(1): 219–228. DOI: 10.1007/s11104-009-9910-7
Sibgatullina M.Sh., Valiev V.S. 2019. Trace elements in wild plants of the Lower Kama National Park. Environment and Human: Ecological Studies 9(3): 325–342. DOI: 10.31862/2500-2961-2019-9-3-325-342 [In Russian]
Smirnov N.S. 2013. Typological and species diversity of dark conifer forests in the lower reaches of the Bol'shaya Porozhnyaya River, a tributary of the Pechora (Pechora-Ilych State Nature Reserve). Russian Journal of Ecology 44(1): 28–35. DOI: 10.7868/S0367059713010125
Smirnova O.V., Bobrovsky M.V., Khanina L.G., Zaugolnova L.B., Korotkov V.N., Aleinikov A.A., Evstigneev O.I., Smirnov V.E., Smirnov N.S., Zaprudina M.V. 2017. Boreal forests. In: European Russian forests. Their current state and features of their history. Netherlands: Springer. P. 59–203.
Suh S., Moran N., Lee Y. 2000. Blue Light Activates Potassium-Efflux Channels in Flexor Cells from Samanea saman Motor Organs via Two Mechanisms. Plant Physiology 123(3): 833–844. DOI: 10.1104/pp.123.3.833
Sukhareva T.A., Lukina N.V. 2014. Mineral composition of assimilative organs of conifers after reduction of atmospheric pollution in the Kola Peninsula. Russian Journal of Ecology 45(2): 95–102. DOI: 10.1134/S1067413614020088
Targulyan V.O. 1971. Soil formation and weathering in cold humid areas. Moscow: Nauka. 268 p. [In Russian]
Thompson K., Parkinson J.A., Band S.R., Spencer R.E. 1997. A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist 136(4): 679–689. DOI: 10.1046/j.1469-8137.1997.00787.x
Van Cleve K., Chapin F.S., Dyrness C.T., Viereck L.A. 1991. Element Cycling in Taiga Forests: State-Factor Control: A framework for experimental studies of ecosystem processes. BioScience 41(2): 78–88. DOI: 10.2307/1311560
Varsanofieva V.A. 1940. Geological structure of the territory of the Pechora-Ilych State Nature Reserve. Proceedings of the Pechora-Ilych State Nature Reserve 1: 5–214. [In Russian]
Vasilevich M.I., Simakin L.V. 2017. Specifics in the formation of snow cover chemical composition in the Pechora-Ilych Biosphere Reserve area. Geoecology, Engineering Geology, Hydrogeology, Geocryology 5: 48–56. [In Russian]
Wardle D.A., Nilsson M.C., Zackrisson O., Gallet C. 2003. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry 35(6): 827–835. DOI: 10.1016/S0038-0717(03)00118-4
Willey N., Fawcett K. 2006. A phylogenetic effect on strontium concentrations in angiosperms. Environmental and Experimental Botany 57(3): 258–269. DOI: 10.1016/j.envexpbot.2005.06.005
WRB. 2006. World reference base for soil resources. A Framework for International Classification, Correlation and Communication: World Soil Resources Reports. Rome, Italy. 86 p.
Zaidel'man F.R. 2007. The reasons for the formation of light-colored acid eluvial horizons in the soil profile. Eurasian Soil Science 40(10): 1031–1041. DOI: 10.1134/S1064229307100018
Zhangurov E.V., Startsev V.V., Dubrovskiy Y.A., Degteva S.V., Dumov A.A. 2019. Morphogenetic Features of Soils under Mountainous Larch Forests and Woodlands in the Subpolar Urals. Eurasian Soil Science 52(12): 1463–1476. DOI: 10.1134/S1064229319120147