Статья

Название статьи ОЦЕНКИ ПОТОКОВ ДИОКСИДА УГЛЕРОДА НА ГРЯДОВО-МОЧАЖИННОМ КОМПЛЕКСЕ С ИСПОЛЬЗОВАНИЕМ ВЫСОКОДЕТАЛЬНОГО ОРТОФОТОПЛАНА
Авторы

Дмитрий Геннадьевич Иванов, м.н.с. Института проблем экологии и эволюции им. А.Н. Северцова РАН (119071, Россия, Москва, Ленинский пр-т., д. 33); iD ORCID: https://orcid.org/0000-0002-5662-3544; e-mail: ivanovdg19@gmail.com
Иван Павлович Котлов, н.с. Института проблем экологии и эволюции им. А.Н. Северцова РАН (119071, Россия, Москва, Ленинский пр-т., д. 33); iD ORCID: https://orcid.org/0000-0002-3251-2778; e-mail: ikotlov@gmail.com
Татьяна Юрьевна Минаева, к.б.н., с.н.с. Филиала «Центра сохранения и восстановления болотных экосистем» Института лесоведения РАН (121609, Россия, Москва, поселок Сосновка, д. 3, корп. 1); iD ORCID: https://orcid.org/0000-0002-4770-8335; e-mail: tminayeva@ilan.ras.ru
Юлия Александровна Курбатова, к.б.н., зав. лаб. биогеоценологии им. В.Н. Сукачева Института проблем экологии и эволюции им. А.Н. Северцова РАН (119071, Россия, Москва, Ленинский пр-т., д. 33); iD ORCID: https://orcid.org/0000-0003-4452-7376; e-mail: kurbatova.j@gmail.com

Библиографическое описание статьи

Ivanov D.G., Kotlov I.P., Minayeva T.Yu., Kurbatova Ju.A. 2021. Estimation of carbon dioxide fluxes on a ridge-hollow bog complex using a high resolution orthophotoplan // Nature Conservation Research. Vol. 6(2). P. 16–28. https://dx.doi.org/10.24189/ncr.2021.020

Рубрика Оригинальные статьи
DOI https://dx.doi.org/10.24189/ncr.2021.020
Аннотация

Использование беспилотных летательных аппаратов (БПЛА) для детального картографирования экосистем становится все более актуальным в последние годы. Большой интерес в получении высокодетальных ортофотопланов представляют болотные экосистемы как одни из основных наземных резервуаров углерода. При этом довольно мало работ отражает суммарные потоки CO2 с площади каждого типа болотных микроформ. В нашей работе представлены результаты исследования, направленного на развитие методов картографирования болотных микроландшафтов и оценки интегральных потоков CO2 между поверхностью болота и атмосферой. На основе высокодетального ортофотоплана, полученного с использованием БПЛА была выполнена оценка площади основных групп микроформ (топи, мочажины, гряды) верхового болота, расположенного на территории Центрально-Лесного государственного природного биосферного заповедника (Европейская часть России). Точность классификации составила от 79% до 93%. Площадь гряд, мочажин и топей составили 0.16 км2, 0.32 км2 и 0.12 км2, соответственно. Для интегральной оценки потоков CO2 были использованы проведенные ранее измерения эмиссии (R), депонирования (GEE) и баланса (NEE) CO2 методом почвенных камер на репрезентативных экспериментальных площадках, соответствующих типам микроформ. После пересчета потоков на площади микроформ, интегральные значения для различных классов за летние сезоны 2014, 2016 и 2017 гг. составили 15–91 кг CO2 × ч-1 для R, 21–190 кг CO2 × ч-1 для GEE и от -122 кг CO2 × ч-1 до 41 кг CO2 × ч-1 для NEE. Результаты проведенного исследования подтвердили, что использование высокодетальных ортофотопланов, полученных с помощью БПЛА позволяет с довольно высокой точностью выделить границы таких микроформ верхового болота как топи, мочажины и гряды, несмотря на наличие некоторых ошибок в классификации. Обнаружено, что в отдельных случаях микроландшафты с низкими относительными значениями потоков, но большой площадью охвата являются доминантами при интегральных оценках. Показано, что исследование структурно-функциональной организации верхового болота необходимо проводить с учетом ее сезонной и межгодовой динамики с четким разделением типов микроформ.

Ключевые слова

CO2, беспилотный летательный аппарат, метод камер, микротопография, пространственная неоднородность, торфяник, уровень грунтовых вод

Информация о статье

Поступила: 28.09.2020. Исправлена: 28.01.2021. Принята к опубликованию: 31.01.2021.

Полный текст статьи
Список цитируемой литературы

Adam E., Mutanga O., Rugege D. 2010. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management 18(3): 281–296. DOI: 10.1007/s11273-009-9169-z
Alexander K.B.K., Harvey M. 2014. Cost-effective aerial imagery and soil CO2 flux surveys for geothermal exploration. In: Proceedings of 5th African Rift Geothermal Conference. Vol. 2. Arusha. P. 29–31.
Anisha N.F., Mauroner A., Lovett G., Neher A., Servos M., Minayeva T., Schutten H., Minelli L. 2020. Locking Carbon in Wetlands: Enhancing Climate Action by Including Wetlands in NDCs. Corvallis, Oregon and Wageningen: Alliance for Global Water Adaptation and Wetlands International. 29 p.
Arroyo-Mora J.P., Kalacska M., Soffer R.J., Moore T.R., Roulet N.T., Juutinen S., Ifimov G., Leblanc G., Inamdar D. 2018. Airborne hyperspectral evaluation of maximum gross photosynthesis, gravimetric water content, and CO2 uptake efficiency of the Mer Bleue Ombrotrophic Peatland. Remote Sensing 10(4): 565. DOI: 10.3390/rs10040565
Becker T., Kutzbach L., Forbrich I., Schneider J., Jager D., Thees B., Wilmking M. 2008. Do we miss the hot spots? – The use of very high resolution aerial photographs to quantify carbon fluxes in peatlands. Biogeosciences 5(5): 1387–1393. DOI: 10.5194/bg-5-1387-2008
Bogdanovskaya-Gienef I.D. 1969. Patterns of the Sphagnum bogs formation (Polistovo-Lowatsky complex). Leningrad: Nauka. 186 p. [In Russian]
Bond-Lamberty B.P., Thomson A.M. 2018. A Global Database of Soil Respiration Data, Version 4.0. ORNL DAAC. Availabel from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578
Botch M.S., Minayeva T.Yu. 1991. Mires of Central Forest State Nature Reserve. In: Mires of Protected Areas: problems of protection and monitoring. Leningrad. P. 22–26. [In Russian]
Danevčič T., Mandic-Mulec I., Stres B., Stopar D., Hacin J. 2010. Emissions of CO2, CH4 and N2O from Southern European peatlands. Soil Biology and Biochemistry 42(9): 1437–1446. DOI: 10.1016/j.soilbio.2010.05.004
Dyukarev E.A., Godovnikov E., Karpov D., Kurakov S., Lapshina E.D., Filippov I., Filippova N., Zarov E. 2019. Net ecosystem exchange, gross primary production and ecosystem respiration in ridge-hollow complex at Mukhrino Bog. Geography, Environment, Sustainability 12(2): 227–244. DOI: 10.24057/2071-9388-2018-77
Glagolev M.V. 2010. Annotated reference list of CH4 and CO2 flux measurements from Russian mires. Environmental Dynamics and Global Climate Change 1(2): 1–53. [In Russian]
Glukhova T.V., Vompersky S.E., Kovalev A.G. 2013. Emission of CO2 from the surface of oligotrophic bogs with due account for their microrelief in the southern taiga of European Russia. Eurasian Soil Science 46(12): 1172–1181. DOI: 10.1134/S1064229314010050
Golovatskaya E.A., Dyukarev E.A. 2012. The influence of environmental factors on the CO2 emission from the surface of oligotrophic peat soils in West Siberia. Eurasian Soil Science 45(6): 588–597. DOI: 10.1134/S106422931206004X
Graham J.D., Glenn N.F., Spaete L.P., Hanson P.J. 2020. Characterizing peatland microtopography using gradient and microform-based approaches. Ecosystems 23(7): 1464–1480. DOI: 10.1007/s10021-020-00481-z
Hodgetts N.G., Söderström L., Blockeel T.L., Caspari S., Ignatov M.S., Konstantinova N.A., Lockhart N., Papp B., Schröck C., Sim-Sim M., Bell D., Bell N.E., Blom H.H., Bruggeman-Nannenga M.A., Brugués M., Enroth J., Flatberg K.I., Garilleti R., Hedenäs L., Holyoak D.T., Hugonnot V., Kariyawasam I., Köckinger H., Kučera J., Lara F., Porley R.D. 2020. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology 42(1): 1–116. DOI: 10.1080/03736687.2019.1694329
IPCC. 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Switzerland: IPCC. 354 p.
Ivanov D.G., Avilov V.K., Kurbatova Y.A. 2017. CO2 fluxes at south taiga bog in the European part of Russia in summer. Contemporary Problems of Ecology 10(2): 97–104. DOI: 10.1134/S1995425517020056
Johansson T., Malmer N., Crill P.M., Friborg T., Aakerman J.H., Mastepanov M., Christensen T. R. 2006. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Global Change Biology 12(12): 2352–2369. DOI: 10.1111/j.1365-2486.2006.01267.x
Joosten H., Clarke D. 2002. Wise use of mires and peatlands. Saarijärvi: International Peat Society. 303 p.
Joosten H., Moen A., Couwenberg J., Tanneberger F. 2017. Mire diversity in Europe: mire and peatland types. In: H. Joosten, F. Tanneberger, A. Moen (Eds.): Mires and peatlands of Europe: Status, distribution and conservation. Stuttgart: Schweizerbart Science Publishers. P. 5–64.
Knoth C., Klein B., Prinz T., Kleinebecker T. 2013. Unmanned aerial vehicles as innovative remote sensing platforms for high-resolution infrared imagery to support restoration monitoring in cut-over bogs. Applied Vegetation Science 16(3): 509–517. DOI: 10.1111/avsc.12024
Korpela I., Haapanen R., Korrensalo A., Tuittila E.S., Vesala T. 2020. Fine-resolution mapping of microforms of a boreal bog using aerial images and waveform-recording LiDAR. Mires and Peat 26: 3. DOI: 10.19189/MaP.2018.OMB.388
Krivenok L.A., Suvorov G.G., Avilov V.K., Sirin A.A. 2019. Eddy covariance measurement of CO2, CH4, and H2O fluxes: Use of a mobile tower and taking into account the changing fetch. Atmospheric and Oceanic Optics 32(11): 942–950. DOI: 10.15372/AOO20191111 [In Russian]
Kurbatova J.A., Li C., Tatarinov F.A., Varlagin A.V., Shalukhina N.V., Olchev A.V. 2009. Modeling of the carbon dioxide fluxes in European Russia peat bogs. Environmental Research Letters 4(4): 045022. DOI: 10.1088/1748-9326/4/4/045022
Kurbatova J.A., Minayeva T.Yu., Tatarinov F.A., Molchanov A.G., Rusanovitch N.R. 2004. Temporal and spatial diversity of CO2 exchange of a bog in South European Taiga. In: N.P. Laverov (Ed.): Emissions and sinks of greenhouse gases on territory of North Eurasia. Puschino: ONTI PNC RAS. P. 41–46. [In Russian]
Kurets V.K., Ikkonen E.N., Talanov A.V. 2007. Effects of forest reclamation on CO2 emissions from peat and sphagno-herbal cover in a meso-oligotrophic bog. Lesnoye Khozyaystvo 4: 27–27. [In Russian]
Lehmann J.R., Münchberger W., Knoth C., Blodau C., Nieberding F., Prinz T., Pancotto V.A., Kleinebecker T. 2016. High-resolution classification of South Patagonian Peat Bog microforms reveals potential gaps in up-scaled CH4 fluxes by use of Unmanned Aerial System (UAS) and CIR Imagery. Remote Sensing 8(3): 173. DOI: 10.3390/rs8030173
Lovitt J., Rahman M.M., Saraswati S., McDermid G.J., Strack M., Xu B. 2018. UAV Remote Sensing Can Reveal the Effects of Low-Impact Seismic Lines on Surface Morphology, Hydrology, and Methane (CH4) Release in a Boreal Treed Bog. Journal of Geophysical Research: Biogeosciences 123(3): 1117–1129. DOI: 10.1016/S0304-3800(03)00067-X
Lund M., Lafleur P.M., Roulet N.T., Lindroth A., Christensen T.R., Aurela M., Chojnicki B.H., Flanagank L.B., Humphreys E.R., Laurila T., Oechel W.C., Olejnik J., Rinne J., Schubert P., Nilsson M.B. 2010. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Global Change Biology 16(9): 2436–2448. DOI: 10.1111/j.1365-2486.2009.02104.x
Luus K.A., Lin J.C. 2017. CARVE Modeled gross ecosystem CO2 exchange and respiration, Alaska, 2012–2014. Oak Ridge: ORNL DAAC. DOI: 10.3334/ORNLDAAC/1314
Masing V.V. 1974. Actual problems of classification and terminology in bog science. In: T.G. Abramova, M.S. Boch, E.A. Galkina (Eds.): Types of bogs in the USSR and the principles of their classification. Leningrad: Nauka. P. 6–12. [In Russian]
McPartland M.Y., Kane E.S., Falkowski M.J., Kolka R., Turetsky M.R., Palik B., Montgomery R.A. 2019. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology 25(1): 93–107. DOI: 10.1111/gcb.14465
Mercer J.J., Westbrook C.J. 2016. Ultrahigh-resolution mapping of peatland microform using ground-based structure from motion with multiview stereo. Journal of Geophysical Research: Biogeosciences 121(11): 2901–2916. DOI: 10.1002/2016JG003478
Miglovets M.N., Mikhaylov O.A., Zagirova S.V. 2013. Vertical CH4 and CO2 fluxes in plant communities of mesooligotrophic peatland of middle taiga. Proceedings of Samara Scientific Centre RAS 16(1): 193–197. [In Russian]
Mikhaylov O.A., Zagirova S.V., Miglovec M.N., Schneider J., Gažovič M., Kutzbach L. 2011. Evaluation of fluxes of carbon dioxide in vegetative communities of the meso-oligotrophic bog in the middle taiga. Theoretical and Applied Ecology 2: 44–51. [In Russian]
Minayeva T.Yu., Kurbatova J.A., Tatarinov F.A., Rusanovitch N.R. 2003. Seasonal dynamics of vegetation as a factor in CO2 gas exchange formation between surface and atmosphere in a bog. In: N.P. Laverov (Ed.): Emissions and sinks of greenhouse gases on territory of North Eurasia. Puschino: ONTI PNC RAS. P. 80–81. [In Russian]
Minayeva T.Yu., Glushkov I.V., Nosova M.B., Starodubtseva O.A., Kurayeva E.N., Volkova E.M. 2007. Essay on the bogs of the Central Forest State Nature Reserve. Proceedings of the Central Forest State Nature Reserve 4: 267–296. [In Russian]
Minayeva T.Yu., Sirin A.A. 2012. Peatland Biodiversity and Climate Change. Biology Bulletin Reviews 2(2): 164–175. DOI: 10.1134/S207908641202003X
Molchanov A.G. 2015. Gas exchange in sphagnum mosses at different near-surface groundwater levels. Russian Journal of Ecology 46(3): 230–235. DOI: 10.1134/S1067413615030066
Molchanov A.G., Olchev A.V. 2016. Model of CO2 exchange in a sphagnum peat bog. Computer Research and Modeling 8(2): 369–377. DOI: 10.20537/2076-7633-2016-8-2-369-377 [In Russian]
Novenko E.Y., Volkova E.M., Nosova N.B., Zuganova I.S. 2009. Late Glacial and Holocene landscape dynamics in the southern taiga zone of East European Plain according to pollen and macrofossil records from the Central Forest State Reserve (Valdai Hills, Russia). Quaternary International 207(1–2): 93–103. DOI: 10.1016/j.quaint.2008.12.006
Novenko. E.Y. 2011. Dynamics of forest ecosystems of the South of Valdai Upland in Late Pleistocene and Holocene. Moscow: GEOS. 112 p. [In Russian]
Nosova M.B. 2009. Holocene spore-pollen diagrams as information source about prehistoric antropogenic activity (a case study from Central Forest natural reserve). Bulletin of Moscow Society of Naturalists 114(3): 30–36. [In Russian]
Puzachenko Y.G., Sandlersky R.B., Krenke A.N., Puzachenko Y.M. 2014. Multispectral remote information in forest research. Contemporary Problems of Ecology 7(7): 838–854. DOI: 10.1134/S1995425514070087
Rahman M.M., McDermid G.J., Strack M., Lovitt J. 2017. A new method to map groundwater table in peatlands using unmanned aerial vehicles. Remote Sensing 9(10): 1057. DOI: 10.3390/rs9101057
Safronova I.N., Yurkovskaya T.K. 2015. Zonal regularities of vegetation cover on plains of the European Russia and their cartographic representation. Botanicheskii Zhurnal 100(11): 1121–1141. [In Russian]
Sirin A.A., Maslov A.A., Valyaeva N.A., Tsyganova O.P., Glukhova T.V. 2014. Mapping of peatlands in the Moscow oblast based on high-resolution remote sensing data. Contemporary Problems of Ecology 7(7): 808–814. DOI: 10.1134/S1995425514070117
Sirin A., Minayeva T., Yurkovskaya T., Kuznetsov O., Smagin V., Fedotov Yu. 2017. Russian Federation (European Part). In: H. Joosten, F. Tanneberger, A. Moen (Eds.): Mires and peatlands of Europe: Status, distribution and conservation. Stuttgart: Schweizerbart Science Publishers. P. 590–617.
Smagin A.V., Smagina M.V., Vomperskii S.E., Glukhova T.V. 2000. Generation and emission of greenhouse gases in bogs. Eurasian Soil Science 33(9): 959–966.
Strack M., Waddington J.M., Rochefort L., Tuittila E.S. 2006. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. Journal of Geophysical Research: Biogeosciences 111(G2): G02006. DOI: 10.1029/2005JG000145
Swindles G.T., Morris P.J., Mullan D.J., Payne R.J. 2019. Widespread drying of European peatlands in recent centuries. Nature Geoscience 12(11): 922–928. DOI: 10.1038/s41561-019-0462-z
Tatarinov F., Kurbatova J., Molchanov A., Minaeva T., Orlov T. 2003. Measuring of components of peat and ground vegetation CO2 balance in a southern taiga peat bog. In: A. Järvet, E. Lode (Eds.): Ecohydrological processes in Northern Wetlands. Selected papers. Tartu. P. 215–220.
Terentieva I.E., Glagolev M.V., Lapshina E.D., Sabrekov A.F., Maksyutov S. 2016. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions. Biogeosciences 13(16): 4615–4626. DOI: 10.5194/bg-13-4615-2016
Urbanová Z., Picek T., Hájek T., Bufková I., Tuittila E.S. 2012. Vegetation and carbon gas dynamics under a changed hydrological regime in central European peatlands. Plant Ecology and Diversity 5(1): 89–103. DOI: 10.1080/17550874.2012.688069
Volkova E.M., Novenko E.Yu., Olchev A.V. 2017. Evaluation of the net CO2 exchange of forest sphagnum bog based on the results of experimental observations and model calculations. In: Carbon Balance of Western Siberian Mires in the Context of Climate Change. Proceedings of the International Conference. Khanty-Mansiysk. P. 48–50. [In Russian]
Wieder R.K., Vitt D.H. 2006. Boreal peatland ecosystems. Heidelberg: Springer Science & Business Media. 448 p.
Yurkovskaya T.K. 1992. Geography and cartography of mire vegetation in European Russia and adjacent areas. Saint Petersburg: Komarov Botanical Institute. 265 p. [In Russian]
Zamolodchikov D.G., Karelin D.V., Karelin A.I., Oechel W.C., Hastings S.J. 2011. CO2 flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques. Tellus, Series B: Chemical and Physical Meteorology 55(4): 879–892. DOI: 10.3402/tellusb.v55i4.16384
Zamolodchikov D.G., Karelin D.V., Gitarsky G.L., Blinov V.G. 2017. Monitoring of greenhouse gases in natural ecosystems. Saratov: Amirit. 279 p. [In Russian]
Zeng J., Matsunaga T., Tan Z.H., Saigusa N., Shirai T., Tang Y., Peng S., Fukuda Y. 2020. Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Scientific Data 7(1): 313. DOI: 10.1038/s41597-020-00653-5