Authors |
Irina A. Kirillova, PhD, Researcher of the Institute of Biology of Komi Scientific Centre, Ural Branch of RAS (167982, Russia, Republic of Komi, Syktyvkar, Kommunisticheskaya Street, 28); iD ORCID: https://orcid.org/0000-0001-7774-7709; e-mail: kirillova_orchid@mail.ru Dmitriy V. Kirillov, PhD, Researcher of the Institute of Biology of Komi Scientific Centre, Ural Branch of RAS (167982, Russia, Republic of Komi, Syktyvkar, Kommunisticheskaya Street, 28); iD ORCID: https://orcid.org/0000-0002-6577-693X; e-mail: kirdimka@mail.ru |
Abstract |
The Orchidaceae is one of the most interesting angiosperm families due to their biology and ecology. However, our knowledge about northern orchids, especially about several aspects of their reproduction biology, is still scarce. This study presents data on reproduction biology of 13 orchid species from the Republic of Komi, situated at the northern border of the orchids' distribution areas. Data on flower number, fruit set, seed morphometry and seed number are presented. The volume of the largest and smallest seeds differs in the study area by 10 times (from 1.2 × 10-3 mm3 in Malaxis monophyllos to 14.2 × 10-3 mm3 in Cypripedium guttatum). The seed shape is determined by the habitat type. Similarly to previous studies, we found that deceptive orchids have lower rates of fruit set, compared to the nectar-rewarding ones. For deceptive orchids, the low fruit set is compensated by the larger number of seeds per fruit, compared to the nectar-rewarding species. The fruit set is correlated positively with the flower number in the deceptive orchids. Moreover, the fruit set rate might also depend on the habitat characteristics, e.g. the canopy closure. The final indicator of a successful reproductive process is the number of emerged and established young plants. This parameter differs between species with different structures of storage organs. We found the lowest proportion of juvenile individuals in rhizome species (2.7–8.9%), in which the low seed reproduction is compensated by the ability to vegetative reproduction and long persistence of clones. In orchids with root-stem tuberoids, the only way of reproduction is seed reproduction. Populations of these species have a higher proportion of juvenile plants (11.8–19.9%). We found similar adaptations to maintain the maximal seed reproduction rate at the northern border of distribution areas in two root-stem tuberoid orchid species (nectar-rewarding Platanthera bifolia and deceptive Dactylorhiza incarnata). The adaptations include an increase in seed number per fruit and a decrease in the seed size in comparison to the southern part of the distribution areas of these species. |
References |
Ackerman J.D. 1986. Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1(2): 108–113. Arditti J., Ghani A.K.A. 2000. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145(3): 367–421. DOI: 10.1046/j.1469-8137.2000.00587.x Arditti J., Michaud J.D., Healey P.L. 1979. Morphometry of orchid seeds. I. Paphiopedilum and native California and related species of Cypripedium. American Journal of Botany 66(10): 1128–1137. DOI: 10.1002/j.1537-2197.1979.tb06332.x Blinova I.V. 1998. Specific features of the ontogeny in some root-tuber orchids (Orchidaceae) in the extreme North. Botanicheskii Zhurnal 83(1): 85–94. [In Russian] Blinova I.V. 2008. Orchid pollination in northern latitude. Bulletin of Moscow Society of Naturalists 113(1): 39–47. [In Russian] Blinova I.V. 2009. The estimation of reproductive success of orchid species north of the Arctic Circle in Europe. Herald of Tver State University. Series: Biology and Ecology 12: 76–83. [In Russian] Blinova I.V., Kulikov P.V. 2006. The distinguishing of ontogenetic stages in Calypso bulbosa (Orchidaceae). Botanicheskii Zhurnal 91(6): 903–916. [In Russian] Cole F.R., Firmage D.H. 1984. The floral ecology of Platanthera blephariglottis. American Journal of Botany 71(5): 700–710. DOI: 10.1002/j.1537-2197.1984.tb14177.x Cozzolino S., Widmer A. 2005. Orchid diversity: an evolutionary consequence of deception? Trends in Ecology and Evolution 20(9): 487–494. DOI: 10.1016/j.tree.2005.06.004 Eriksson O., Kainulainen K. 2011. The evolutionary ecology of dust seeds. Perspectives in Plant Ecology, Evolution and Systematics 13(2): 73–87. DOI: 10.1016/j.ppees.2011.02.002 Healey P.L., Michaud J.D., Arditti J. 1980. Morphometry of Orchid Seeds. III. Native California and Related Species of Goodyera, Piperia, Platanthera and Spiranthes. American Journal of Botany 67(4): 508–518. DOI: 10.1002/j.1537-2197.1980.tb07678.x Isachenko T.I., Lavrenko E.M. 1980. Botanical and geographical zoning. In: Vegetation of the European part of the USSR. Leningrad: Nauka. P. 10–20. [In Russian] Jersáková J., Johnson S.D., Kindlmann P. 2006. Mechanisms and evolution of deceptive pollination in orchids. Biological Reviews 81(2): 219–235. DOI: 10.1017/S1464793105006986 Johnson S.D., Peter C.I., Ågren J. 2004. The effects of nectar addition on pollen removal and geitonogamy in the non-rewarding orchid Anacamptis morio. Proceedings of the Royal Society of London. Series B: Biological Sciences 271(1541): 803–809. DOI: 10.1098/rspb.2003.2659 Khomutovskiy M.I. Pollination efficiency of some orchids species at the Valdai Upland. In: Conservation and cultivation of orchids. Moscow: KMK Scientific Press Ltd. P. 456–461. [In Russian] Kindlmann P., Jersáková J. 2006. Effect of floral display on reproductive success in terrestrial orchids. Folia Geobotanica 41(1): 47–60. DOI: 10.1007/BF02805261 Kirillov D., Kirillova I. 2019. The Genus Epipactis Zinn (Orchidaceae) in the Komi Republic. Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences. Occurrence dataset. Accessed via GBIF.org on 14.06.2019. DOI: 10.15468/dnuqwf Kirillova I.A., Kirillov D.V. 2017. Reproductive biology of Platanthera bifolia (L.) Rich. (Orchidaceae) on its northern distribution border (The Komi Republic). Tomsk State University Journal of Biology 38: 68–88. DOI: 10.17223/19988591/38/4 [In Russian] Kirillova I.A., Kirillov D.V. 2015. Reproduction biology of Gymnadenia conopsea (L.) R.Br. (Orchidaceae) on its northern distribution border. Contemporary Problems of Ecology 8(4): 512–522. DOI: 10.1134/S1995425515040095 Kirillova I.A., Kirillov D.V. 2019. Effect of lighting conditions on the reproductive success of Cypripedium calceolus L. (Orchidaceae, Liliopsida). Biology Bulletin 46(10): 1317–1324. DOI: 10.1134/S1062359019100157 Kirillova I.A., Kirillov D.V. 2020a. Effect of illumination conditions on the reproductive success of Epipactis helleborine (L.) Crantz (Orchidaceae). Russian Journal of Ecology 51(4): 389–393. DOI: 10.1134/S1067413620040098 Kirillova I.A., Kirillov D.V. 2020b. Impact of weather conditions on seasonal development, population structure and reproductive success on Dactylorhiza traunsteineri (Orchidaceae) in the Komi Republic (Russia). Nature Conservation Research 5(Suppl.1): 77–89. DOI: 10.24189/ncr.2020.016 Kirillova I.A., Kirillov D.V. 2020. Reproductive success of Dactylorhiza incarnata ssp. cruenta (Orchidaceae) on the northern border of its distribution area. Tomsk State University Journal of Biology 49: 25–49. DOI: 10.17223/19988591/49/2 [In Russian] Kiyohara S., Fukunaga H., Sawa S. 2012. Characteristics of the falling speed of Japanese orchid seeds. International Journal of Biology 4(3): 10–12. DOI: 10.5539/ijb.v4n3p10 Kulikov P.V., Philippov E.G. 2000. Reproductive Strategy of Orchids in Moderate Zone. In. Embryology of flowering Plants. Terminology and Concepts. Vol. 3: Reproductive Systems. Saint Petersburg: Mir i Semya. P. 510–513. [In Russian] Lesica P., Allendorf F.W. 1995. When are peripheral populations valuable for conservation? Conservation Biology 9(4): 753–760. DOI: 10.1046/j.1523-1739.1995.09040753.x Nazarov V.V. 1998. Samenproduktivität europäischer Orchideen. I. Methoden zur Bestimmung der Samenzahl. Journal Europäischer Orchideen 30(3): 591–602. Neiland M.R.M., Wilcock C.C. 1998. Fruit set, nectar reward, and rarity in the Orchidaceae. American Journal of Botany 85(12): 1657–1671. DOI: 10.2307/2446499 O'Connell L.M., Johnston M.O. 1998. Male and female pollination success in a deceptive orchid, a selection study. Ecology 79(4): 1246–1260. DOI: 10.1890/0012-9658(1998)079[1246:MAFPSI]2.0.CO;2 Phillips R.D., Reiter N., Peakall R. 2020. Orchid conservation: from theory to practice. Annals of Botany 126(3): 345–362. DOI: 10.1093/aob/mcaa093 Proctor H.C. 1998. Effect of pollen age on fruit set, fruit weight, and seed set in three orchid species. Canadian Journal of Botany 76(3): 420–427. DOI: 10.1139/b98-010 Proctor H.C., Harder L.D. 1994. Pollen load, capsule weight, and seed production in three orchid species. Canadian Journal of Botany 72(2): 249–255. DOI: 10.1139/b94-033 Proctor H.C., Harder L.D. 1995. Effect of pollination success on floral longevity in the orchid Calypso bulbosa (Orchidaceae). American Journal of Botany 82(9): 1355–1355. DOI: 10.1002/j.1537-2197.1995.tb11584.x Pyke G.H. 1991. What does it cost a plant to produce floral nectar? Nature 350(6313): 58–59. DOI: 10.1038/350058a0 R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.R-project.org/ Sagarin R.D., Gaines S.D. 2002. The 'abundant centre' distribution: to what extent is it a biogeographical rule? Ecology Letters 5(1): 137–147. DOI: 10.1046/j.1461-0248.2002.00297.x Serebryakova T.I. (Eds.). 1977. Coenopopulations of plants (development and relationships). Moscow: Nauka. 182 p. [In Russian] Serebryakova T.I., Sokolova T.G. (Eds.). 1988. Coenopopulations of plants (essays on population biology). Moscow: Nauka. 131 p. [In Russian] Schiestl F.P. 2005. On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92(6): 255–264. DOI: 10.1007/s00114-005-0636-y Shimizu N., Sawa Y., Sawa S. 2012. Adaptation and evolution of seed shape on bleeding area in Japanese orchids. International Journal of Biology 4(2): 47–53. DOI: 10.5539/ijb.v4n2p47 Sonkoly J., Vojtkó A., Tökölyi J., Török P., Sramkó G., Illyés Z., Molnár V.A. 2016. Higher seed number compensates for lower fruit set in deceptive orchids. Journal of Ecology 104(2): 343–351. DOI: 10.1111/1365-2745.12511 Southwick E.E. 1984. Photosynthate allocation to floral nectar: a neglected energy investment. Ecology 65(6): 1775–1779. DOI: 10.2307/1937773 Swarts N.D., Dixon K.W. 2009. Terrestrial orchid conservation in the age of extinction. Annals of Botany 104(3): 543–556. DOI: 10.1093/aob/mcp025 Tatarenko I.V. 1996. Orchids of Russia: life forms, biology, strategy of preservation. Moscow: Argus. 207 p. [In Russian] Tremblay R.L., Ackerman J.D., Zimmerman J.K., Calvo R.N. 2005. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biological Journal of the Linnean Society 84(1): 1–54. DOI: 10.1111/j.1095-8312.2004.00400.x Uranov A.A., Serebryakova T.I. (Eds.). 1976. Coenopopulations of plants (basic concepts and structure). Moscow: Nauka. 217 p. [In Russian] Vakhrameeva M.G. 2000. Genus Dactylorhiza. In: Biological Flora of the Moscow Region. Vol. 14. Moscow: Grif & K. P. 55–86. [In Russian] Vakhrameeva M.G., Varlygiva T.I., Batatlov A.E., Timchenko I.A., Bogomolova T.I. 1997. Genus Epipactis. In: Biological Flora of the Moscow Region. Vol. 13. Moscow: Poliex. P. 50–87. [In Russian] Vereecken N.J., Dafni A., Cozzolino S. 2010. Pollination syndromes in Mediterranean orchids – implications for speciation, taxonomy and conservation. Botanical Review 76(2): 220–240. DOI: 10.1007/s12229-010-9049-5 Zlobin Yu.A., Sklyar V.G., Klimenko A.A. 2013. Populations of rare plant species: Theoretical bases and methodology of study. Sumy: Universitetskaya Kniga. 439 p. [In Russian] |