Авторы |
Ольга Николаевна Бахмет, чл.-кор. РАН, д.б.н., председатель КарНЦ РАН, руководитель Отдела комплексных научных исследований КарНЦ РАН, г.н.с. Отдела комплексных научных исследований КарНЦ РАН, руководитель лаборатории экологического мониторинга и моделирования Отдела комплексных научных исследований КарНЦ РАН (185910, Россия, Республика Карелия, г. Петрозаводск, ул. Пушкинская, д. 11); iD ORCID: https://orcid.org/0000-0002-5093-3285; e-mail: obahmet@mail.ru Мария Владимировна Медведева, к.б.н., заведующая лабораторией лесного почвоведения Института леса КарНЦ РАН (185910, Россия, Республика Карелия, г. Петрозаводск, ул. Пушкинская, д. 11); iD ORCID: https://orcid.org/0000-0002-2543-3123; e-mail: mariamed@mail.ru Борис Владимирович Раевский, д.с.-х.н., заведующий лабораторией лесных биотехнологий Института леса КарНЦ РАН, в.н.с. лаборатории лесных биотехнологий Института леса КарНЦ РАН, с.н.с. лаборатории экологического мониторинга и моделирования Отдела комплексных научных исследований КарНЦ РАН (185910, Россия, Республика Карелия, г. Петрозаводск, ул. Пушкинская, д. 11); iD ORCID: https://orcid.org/0000-0002-1315-8937; e-mail: borisraevsky@gmail.com Сергей Геннадьевич Новиков, к.б.н., н.с. лаборатории лесного почвоведения Института леса КарНЦ РАН (185910, Россия, Республика Карелия, г. Петрозаводск, ул. Пушкинская, д. 11); iD ORCID: https://orcid.org/0000-0003-2387-2656; e-mail: novikovsergey.nsg@gmail.com Татьяна Станиславовна Шелехова, к.г.н., с.н.с. лаборатории геохимии, четвертичной геологии и геоэкологии Института геологии КарНЦ РАН (185910, Россия, Республика Карелия, г. Петрозаводск, ул. Пушкинская, д. 11); iD ORCID: https://orcid.org/0000-0003-0170-554X; e-mail: shelekh@krc.karelia.ru |
Аннотация |
Исследования проведены на территории заповедника «Костомукшский», расположенного в северной тайге Восточной Фенноскандии. Рассмотрены основные этапы изучения почв и почвенного покрова в данном районе. Проведен комплексный анализ почв и почвенного покрова ООПТ в контексте исследования почвообразующих пород, древесной растительности. Почвы ненарушенных территорий являются эталоном при мониторинге антропогенно-нарушенных лесных экосистем, что делает актуальным проведение данных работ. Целью исследования является изучение состава почвенного фонда, а также свойств почв, наиболее распространенных на территории Костомукшского заповедника. Изучены морфологические и физико-химические свойства почв. Природно-климатические условия заповедника благоприятствуют развитию подзолообразовательного процесса. Установлено, что наибольшее распространение на ООПТ имеют зональные альфегумусовые почвы (Podzols). На выходах коренных пород формируются маломощные почвы (Leptosols), они занимают небольшую долю в почвенном фонде, продуктивность произрастающих на них растений низкая. В условиях повышенного увлажнения формируются интразональные торфяные болотные почвы (Histosols). Они занимают небольшие площади и развиваются в понижениях рельефа, между холмами, по окраинам болот, в блюдцеобразных впадинках скальных обнажений. Определено таксономическое положение исследованных почв в соответствии с региональной классификацией и международной классификацией WRB. Установлена приуроченность почв к древостоям различного породного состава. Подзолы иллювиально-железистые (Albic Rustic Podzols) господствуют под сосняками (Pinus sylvestris), ельники (Picea abies) уступают им по площади распространения на ООПТ. Березняки (Betula pendula), сформировавшиеся на почвах альфе-гумусового генезиса, не занимают большие площади. Они встречаются на вырубках, почвенно-ветровальных комплексах, в местах, пройденных пожарами. Проведен анализ приуроченности почв к четвертичным отложениям. Коренные горные породы перекрываются четвертичными песчаными и супесчаными отложениями, мощность которых изменяются в широком диапазоне (от 5 см до 5 м). Широко распространенными являются моренные и ледниково-озерные отложения, торфяные отложения распространены на территории исследования в меньшей степени. Для морфологического строения исследованных почв характерен хорошо дифференцированный профиль, мощная лесная подстилка (О), наличие подзолообразовательного процесса. В основном, распространены почвы легкого гранулометрического состава. Низкое содержание мелкодисперсных фракций свидетельствует о невысоком выветривании первичных минералов в почвенной толще в условиях холодного гумидного климата, четкой зависимости в их распределении по профилю почв не обнаружено. Изученные почвы – кислые. Наибольшей кислотностью в профиле почв отличается лесная подстилка. По мере продвижения вглубь почвенной толщи кислотность снижается. Специфика первичных факторов почвообразования сказывается на формировании органического вещества почв. Почвы характеризуются высоким содержанием углерода (C) в верхнем органогенном горизонте, с глубиной его содержание резко снижается. Распределение азота (N) по профилю почв связано с распределением органического вещества в целом: наибольшее в лесной подстилке, в минеральной толще оно снижается. Широкое отношение C:N в лесной подстилке косвенно свидетельствует о заторможенности процессов микробной трансформации органического вещества в почвах. Для почв ООПТ, также как и в целом для Карелии, характерно невысокое содержание большинства макро- и микроэлементов. Исключение составляют Fe, Cu, Zn, что обусловлено приуроченностью территории исследования к железорудным проявлениям в земной коре. Почвенный покров данной ООПТ отличается значительной пестротой, что связано с частой сменой почвообразующих пород и рельефом местности. В связи с тем, что почвы имеют легкий гранулометрический состав, низкое содержание гумуса, промывной водный режим, возможно, вымывание элементов за пределы корнеобитаемой зоны. Полученные данные могут быть основой при проведении мониторинга природной среды, корректно экстраполированы на почвы ненарушенных лесных экосистем Фенноскандии. |
Список цитируемой литературы |
Antsiferova O.A. 2014. Ferromanganese nodule neoformations in the soils of the western part of the Kaliningrad region. IKBFU's Vestnik 1: 73–78. [In Russian] Aparin В.F., Kasatkina G.A., Matinian N.N., Sukhacheva Е.U. 2007. Red Data Soil Book of the Leningrad region. Saint Petersburg: Aeroplan. 320 p. [In Russian] Arnalds O., Hallmark C.T., Wilding L.P. 1995. Andisols from four different regions of Iceland. Soil Science Society of America Journal 59(1): 161–169. DOI: 10.2136/sssaj1995.03615995005900010025x Berthelsen B.O., Årdal L., Steinnes E., Abrahamsen G., Stuanes A.O. 1994. Mobility of heavy metals in pine forest soils as influenced by experimental acidification. Water, Air and Soil Pollution 73(1): 29–48. DOI: 10.1007/BF00477974 Bevandić S., Brenko T., Babajić E., Borojević Šoštarić S. 2018. Formation mechanisms of Fe-Mn concretions in the Vijenac Quarry, Dinaric Ophiolite Zone. Mining-Geology-Petroleum Engineering Bulletin 33(3): 63–74. DOI: 10.17794/rgn.2018.3.7 Bölviken B., Kullerud G., Loucks R. 1990. Geochemical and metallogenic provinces: a discussion initiated by results from geochemical mapping across Northern Fennoscandia. Journal of Geochemical Exploration 39(1–2): 49–90. DOI: 10.1016/0375-6742(90)90069-M Burke D.J., Hamerlynck E.P., Dittmar H. 2002. Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology 68(3): 1157–1164. DOI: 10.1128/AEM.68.3.1157-1164.2002 Buscot F., Varma A. 2009. Microorganisms in Soils: Roles in Genesis and Functions. Springer Science & Business Media. 422 p. Cédric B., Müller M., Schulin R., Leifeld J. 2018. Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature. Biogeosciences 15(3): 703–719. DOI: 10.5194/bg-15-703-2018 Charzynski P., Hulisz P., Bednarek R. 2005. Diagnostic subsurface horizons in systematics of polish soils and their analogues in WRB classification. Eurasian Soil Science 38(Suppl.1): 55–59. Dazzi C., Lo Papa G. 2015. Anthropogenic soils: general aspects and features. Ecocycles 1(1): 3–8. DOI: 10.19040/ecocycles.v1i1.23 Deguignet M., Juffe-Bignoli D., Harrison J., MacSharry B., Burgess N., Kingston N. 2014. United Nations List of Protected Areas. UNEP-WCMC: Cambridge. UK. 30 p. Dmitriev E.A. 1995. Mathematical Statistics in Soil Science. Moscow: MSU. 291 p. [In Russian] Dobrovolskaya T.G., Zvyagintsev D.G., Chernov I.Yu., Golovchenko A.V., Zenova G.M., Lysak L.V., Manucharova N.A., Marfenina O.E., Polyanskaya L.M., Stepanov A.L., Umarov M.M. 2015. The Role of Microorganisms in the Ecological Functions of Soils. Eurasian Soil Science 48(9): 959–967. DOI: 10.1134/S1064229315090033 Dobrovolskiy G.V. (Ed.). 1997. Soil, city, environment. Moscow: Foundation for Economic Literacy. 320 p. [In Russian] Elina G.A., Lykashov A.D., Tokarev P.N. 2005. Mapping of vegetation and landscapes on temporary sections of the Holocene of the taiga zone of eastern Fennoscandia. Saint Petersburg: Nauka. 112 p. [In Russian] Erokhin S., Moskvitin E. (Eds.). 2001. Republic of Karelia: Atlas. Saint Petersburg. 136 p. [In Russian] Erukov G.V., Morozova R.M., Lazareva I.P. 1977. Forest soils and soil cover of the green zone of Kostomukshi. In: G.S. Biske, I.M. Nesterenko, O.I. Potapova (Eds.): Biological resources of the Kostomuksha region, ways of development and protection. Petrozavodsk: Karelian Branch of AS USSR. P. 59–78. [In Russian] Fedorets N.G., Bakhmet O.N., Medvedeva M.V., Akhmetova G.V., Novikov S.G., Tkachenko Yu.N., Solodovnikov A.N. 2015. Heavy metals in the soils of Karelia. Petrozavodsk: Karelian Research Centre of RAS. 222 p. [In Russian] Fedorets N.G., Morozova R.M., Sinkevich S.M., Zaguralskaya L.M. 2000. Evaluation of productivity of forest soils in Karelia. Petrozavodsk: Karelian Research Centre of RAS. 195 p. [In Russian] Field determinant of Russian soils. Moscow: Dokuchaev Soil Science Institute, 2008. 150 p. [In Russian] Foster R.C. 1988. Microenvironments of soil microorganisms. Biology and Fertility of Soils 6(3): 189–203. DOI: 10.1007/BF00260816 Gasparatos D. 2007. Genesis of Fe-Mn Concretions and Nodules in Alfisols of Thessaly. PhD Thesis. Athens: Agricultural University of Athens. 275 p. Getzner M., Vik M.L., Brendehaug E., Lane B. 2014. Governance and management strategies in national parks: implications for sustainable regional development. International Journal of Sustainable Society 6(1–2): 82–101. DOI: 10.1504/IJSSOC.2014.057891 Grigal D.F., McColl J.G. 1977. Litter decomposition following forest fire in Northeastern Minnesota. Journal of Applied Ecology 14(2): 531–538. DOI: 10.2307/2402565 Gromtsev A.N. (Ed.). 2020. State report on the environment of the Republic of Karelia in 2019. Petrozavodsk: Ministry of Nature Management and Ecology of the Republic of Karelia. 248 p. [In Russian] Gromtsev A.N. 2000. Landscape ecology of taiga forests: theoretical and applied aspects. Petrozavodsk: Karelian Research Centre of RAS. 144 p. [In Russian] Hiederer R., Michéli E., Durrant T. 2011. Evaluation of BioSoil Demonstration Project – Soil Data Analysis. Luxembourg: Publications Office of the European Union. 155 p. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports №106. Rome: FAO. 192 p. Kolomytsev V.A., Shiltsova V.G. (Eds.). 1998. Integrated environmental monitoring in the Republic of Karelia. Petrozavodsk: Karelian Research Centre of RAS. 115 p. [In Russian] Köster K., Köster E., Orumaa A., Parro K., Jõgiste K., Berninger F., Pumpanen J., Metslaid M. 2016. How Time since Forest Fire Affects Stand Structure, Soil Physical-Chemical Properties and Soil CO2 Efflux in Hemiboreal Scots Pine Forest Fire Chronosequence? Forests 7(9): 201. DOI: 10.3390/f7090201 Kulmatiski A., Sprouse S., Beard K. 2017. Soil type more than precipitation determines fine-root abundance in savannas of Kruger National Park, South Africa. Plant and Soil 417(1–2): 523–533. DOI: 10.1007/s11104-017-3277-y Lavrov M.M. 1979. Hyperbasites and stratification of peridotite-gabbro-norite intrusions of the Precambrian of Northern Karelia. Leningrad: Nauka. 136 p. [In Russian] Lordkipanidze M., Boer C., Bressers H. 2015. Assessing governance context to increase drought resilience: The case of the Drents-Friese Wold National Park. International Journal of Water Governance 4: 69–92. Lu X., Zhang X. 2008. 226Ra, 232Th and 40K activities in soils of Cuihua Mountain National Geological Park, China. Environmental Geology 56(2): 353–357. DOI: 10.1007/s00254-007-1170-3 Lukashov A.D., Demidov I.N. 2001. Conditions for the formation of relief and Quaternary deposits of Karelia in the late and post-glacial periods as the basis for the formation of the modern natural environment. Transactions of KarRC RAS. Biogeography 2: 30–47. [In Russian] Martinelli N., Pignatelli O. 1995. Dendroecological Investigations at the permanent plots IT01-IT02 in South Tyrol. Wald und Natur. Integrated Monitoring Programme. Available from http://www.provinz.bz.it/land-forstwirtschaft/wald-holz-almen/interaktive-karte.asp?publ_action=300&publ_image_id=471177 Maslov M.N., Makarov M.I. 2013. Organic matter of the soil of the mountain tundra in North Fennoscandia. Moscow University Soil Science Bulletin 68(3): 99–103. Medvedeva M.V., Akhmetova G.V., Fedorets N.G., Yakovlev A.S., Raevsky B.V., Travin V.V. 2018. Soils of Low-Mountain Landscapes of North Karelia. Eurasian Soil Science 51(2): 131–139. DOI: 10.1134/S1064229318020096 Medvedeva M.V., Bakhmet O.N., Yakovlev A.S. 2003. Biological diagnostics of aerotechnogenic pollution in forest soils of Eastern Fennoscandia. Eurasian Soil Science 36(1): 101–106. Medvedeva M.V., Bakhmet O.N., Yakovlev A.S. 2006a. Microbiological and biochemical indicators of the state of Karelian soils exposed to aerotechnogenic pollution. Eurasian Soil Science 39(1): 62–66. DOI: 10.1134/S106422930601008X Medvedeva M.V., Bakhmet O.N., Yakovlev A.S. 2006b. Decomposition of spruce falloff under condition of air-borne industial pollution. Lesovedenie 4: 75–77. [In Russian] Medvedeva M.V., Yakovlev A.S. 2011. Changes in the biochemical characteristics of soils in the impact zone of the Kostomuksha ore-dressing enterprise. Eurasian Soil Science 44(2): 211–216. DOI: 10.1134/S1064229311020086 Medvedeva M.V., Bakhmet O.N. 2001. The current state of microbiocenosis of forest soils contaminated with airpollutants in the North-West of Russia. Lesovedenie 6: 37–40. [In Russian] Melillo J.M., Lu X., Kicklighter D.W., Reilly J.M., Cai Y., Sokolov A.P. 2016. Protected areas' role in climate-change mitigation. Ambio 45(2): 133–145. DOI: 10.1007/s13280-015-0693-1 Mikhailovskaya O.N. 1951. On natural and cultivated soils...: (from materials of the soil map of the KASSR). Izvestiya of the Karelian-Finnish branch of the USSR Academy of Sciences 3: 13–32. [In Russian] Morozova R.M. (Ed.). 1996. Soil map of Karelia. Scale: 1:1 000 000. Archive of the Laboratory for Forest Pedology of the FRI KarRC RAS. [In Russian] Morozova R.M. 1991. Forest soils of Karelia. Leningrad: Nauka. 184 p. [In Russian] Olsson M. 2001. Soil Survey in Sweden. European soil bureau research report №6. P. 151–145. Olsson M.T., Erlandsson M., Lundin L., Nilsson T., Nilsson Å., Stendahl J. 2009. Organic carbon stocks in Swedish Podzol soils in relation to soil hydrology and other site characteristics. Silva Fennica 43(2): 209–222. DOI: 10.14214/sf.207 Ortíz-Castro R., Contreras-Cornejo H.A., Macías-Rodríguez L., López-Bucio J. 2009. The role of microbial signals in plant growth and development. Plant Signaling and Behavior 4(8): 701–712. DOI: 10.4161/psb.4.8.9047 Peikhvasser V.N. (Ed.). 1989. Atlas of the Karelian ASSR (Maps). Moscow: GUGK. 40 p. [In Russian] Poikolainen J. 1995. The effects of the emissions of the Kostomuksha mining complex on the chemical composition of deposition and soil water in the surrounding pine forests. Water Air and Soil Pollution 85(3): 1689–1694. DOI: 10.1007/BF00477223 Raevsky B.V. 2016. Structural features of the forest area of the Kostomuksha State Nature Reserve. In: Scientific research in nature reserves and national parks of Russia. Petrozavodsk. P. 186. [In Russian] Rodríguez N., Notario J., Arbelo C.D., Rodríguez-Rodríguez A., Guerra J.A. 2014. Spatial variability of soil properties and soils classification in Teide National Park (Tenerife, Canary Islands). In: D. Arrouays, N. McKenzie, J. Hempel, A. Richer de Forges, A.B. McBratney (Eds.): GlobalSoilMap. Basis of the Global Spatial Soil Information System. London: Taylor & Francis. P. 191–196. Sedia E.G., Ehrenfeld J.G. 2006. Differential effects of lichens and mosses on soil enzyme activity and litter decomposition. Biology and Fertility of Soils 43(2): 177–189. DOI: 10.1007/s00374-006-0077-6 Sharma G.D. 1981. Effect of fire on soil microorganisms in a Meghalaya pine forest. Folia Microbiologica 26(4): 321–327. DOI: 10.1007/BF02927260 Shishov L.L., Tonkonogov V.D., Lebedeva I.I., Gerasimova M.I. 2004. Classification and diagnostics of Russian soils. Smolensk: Oikumena. 342 p. [In Russian] UNEP-WCMC and IUCN. 2016. Protected Planet Report 2016. Cambridge UK; Gland, Switzerland: UNEP-WCMC and IUCN. 74 p. Van Herk C., Mathijssen-Spiekman E., De Zwart D. 2003. Long distance nitrogen air pollution effects on lichens in Europe. The Lichenologist 35(4): 347–359. DOI: 10.1016/S0024-2829(03)00036-7 Van Wensem J., Amorim M., Römbke J. 2008. Soil protection in Europe. Integrated Environmental Assessment and Management 4(4): 519–520. DOI: 10.1897/IEAM_2008-060d.1 Vanhala P., Kapanen A., Fritze H., Niemi R.M. 1998. Microbial activity and biomass in four Finnish coniferous forest soils – spatial variability and effects of heavy metals. Boreal Environment Research 3(3): 287–295. Vinogradov A.P. 1962. Average content of elements in the earth's crust. Geokhimia 7: 555–557. [In Russian] Vodyanitskiy Yu.N. 2003. Chemistry and mineralogy of soil iron. Moscow: Dokuchaev Soil Science Institute. 238 p. [In Russian] Vorobyeva L.A. 1998. Chemical analysis of soils. Moscow: Moscow State University. 272 p. [In Russian] Ylli-Halla M., Mokma D. 2002. Problems encountered when classifying the soils of Finland. European soil bureau research report №7. P. 183–189. Zaidelman F.R., Nikiforova A.S. 2001. Genesis and diagnostic significance of neoformations in soils of the forest and forest-steppe zones. Moscow: MSU. 216 p. [In Russian] |