Article

Article name BROWN BEAR (URSUS ARCTOS) HABITAT SUITABILITY AND DISTRIBUTION MODELLING IN THE SOUTHERN TAIGA SUBZONE USING THE METHOD OF MAXIMUM ENTROPY
Authors

Sergey S. Ogurtsov, Researcher of the Central Forest State Nature Biosphere Reserve; Russia (172521, Tver region, Nelidovo district, Zapovednyi settlement); e-mail: etundra@mail.ru

Reference to article

Ogurtsov S.S. 2019. Brown bear (Ursus arctos) habitat suitability and distribution modelling in the southern taiga subzone using the method of maximum entropy. Nature Conservation Research 4(4): 34–64. https://dx.doi.org/10.24189/ncr.2019.061

Electronic Supplement. Environmental variables, modelling settings and variable contributions in the eight considered models using MaxEnt (Link).

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2019.061
Abstract

The article presents results of the brown bear habitat suitability and distribution modelling, conducted in the Central Forest Nature Reserve and its buffer zone (West-European Russia, Tver region) using the MaxEnt approach. The basic rules for performing such a study, approaches and modelling techniques were reviewed briefly. Vegetation indices, morphometric characteristics of the relief, proximity rasters and land cover types were used as predictors. The occurrence points of the studied species were recorded on permanent routes using a GPS navigator during 2008–2018. Eight models with different combinations of input data (occurrence points and environment parametres) were chosen as final set. We used two main modelling approaches. In the first approach, for modelling we used only occurrence points reflecting the relationships of the species with the habitat (feeding places mainly). On the basis of them, habitat suitability models were built. In the second approach, we used all occurrence points of the studied species. On the basis of them, distribution models were built. The set of brown bear occurrence points registered by forest rangers and researchers was used as an independent test data set. The scenarios of the influence of anthropogenic food sources (abandoned apple orchards and oat fields) were modelled separately. The obtained AUCtest values ranged from 0.61 to 0.73. The maximum TSStest was 0.50. The continuous Boyce index ranged from 0.63 to 0.99. The models correctly recognised from 68% to 82% of independent points. The predictor of anthropogenic food sources largely contributed to all models, where it was presented, and highly distorted the overall picture of suitability and distribution. In other cases, grasslands, NDVI, and young deciduous forests had the highest contribution. In the study area, brown bears preferred grasslands, concentrated on moraine-kama ridges, which provided them with food throughout the wakeful period, as well as forest glades, scarce forests, young deciduous and mixed forests with dense undergrowth and nemoral spruce forests. The study area of the partially disturbed buffer zone was more suitable for brown bears than the intact areas of the Protected Area (66–67% and 51% of suitable habitats, respectively). We identified main omissions in the applied method of occurrence point's registration. This could lead to incorrect estimates of the contribution of some predictors (underestimations of boreal spruce forests, raised bogs and floodplain meadows).

Keywords

GIS, habitat suitability modelling (HSM), MaxEnt, species distribution modelling (SDM), spatial modelling

Artice information

Received: 27.05.2019. Revised: 28.07.2019. Accepted: 13.08.2019.

The full text of the article
References

Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6): 716–723. DOI: 10.1109/TAC.1974.1100705
Allouche O., Tsoar A., Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43(6): 1223–1232. DOI: 10.1111/j.1365-2664.2006.01214.x
Anderson R.P., Gonzalez Jr.I. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecological Modelling 222(15): 2796–2811. DOI:10.1016/j.ecolmodel.2011.04.011
Ansari M.H., Ghoddousi A. 2018. Water availability limits brown bear distribution at the southern edge of its global range. Ursus 29(1): 13–24. DOI: 10.2192/URSUS-D-16-00017.1
Atlegrim O., Sjöberg K. 1996. Response of bilberry (Vaccinium myrtillus) to clearcutting and single-tree selection harvests in uneven-aged boreal Picea abies forests. Forest Ecology and Management 86(1–3): 39–50. DOI: 10.1016/S0378-1127(96)03794-2
Baasch D.M., Tyre A.J., Millspaugh J.J., Hygnstrom S.E., Vercauteren K.C. 2010. An evaluation of three statistical methods used to model resource selection. Ecological Modelling 221(4): 565–574. DOI: 10.1016/j.ecolmodel.2009.10.033
Banerjee A.K., Mukherjee A., Dewanji A. 2017. Potential distribution of Mikania micrantha Kunth in India – evidence of climatic niche and biome shifts. Flora 234: 215–223. DOI: 10.1016/j.flora.2017.08.001
Bassi E., Willis S.G., Passilongo D., Mattioli L., Apollonio M. 2015. Predicting the Spatial Distribution of Wolf (Canis lupus) Breeding Areas in a Mountainous Region of Central Italy. PLoS ONE 10(6): e0124698. DOI: 10.1371/journal.pone.0124698
Biatov A.P., Ponomareva A.A. 2016. Experience in modeling the ecological niche of wild boar (Sus scrofa L.) on the territory of Slobozhansky National Park. In: GIS and Protected Areas: Proceedings of the III Scientific-Methodical Seminar. Kharkiv: Publishing House «Madrid». P. 12–20. [In Russian]
Boria R.A., Olson L.E., Goodman S.M., Anderson R.P. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275: 73–77. DOI: 10.1016/j.ecolmodel.2013.12.012
Boyce M.S., Vernier P.R., Nielsen S.E. Schmiegelow F.K.A. 2002. Evaluating resource selection functions. Ecological Modelling 157(2–3): 281–300. DOI: 10.1016/S0304-3800(02)00200-4
Broennimann O. 2018. Package 'ecospat', version 3.0. Spatial Ecology Miscellaneous Methods. 107 p.
Brown J.L. 2014. SDMtoolbox: a Python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5(7): 694–700. DOI: 10.1111/2041-210X.12200
Brown J.L., Bennett J.R., French C.M. 2017. SDMtoolbox 2.0: the next generation Python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5: e4095. DOI: 10.7717/peerj.4095
Burnham K.P., Anderson D.R. 2002. Model selection and inference: a practical information-theoretic approach. 2nd ed. USA, New York: Springer-Verlag. 488 p. DOI: 10.1007/b97636
Callen S.T., Miller A.J. 2015. Signatures of niche conservatism and niche shift in the North American kudzu (Pueraria montana) invasion. Diversity and Distributions 21(8): 853–863. DOI: 10.1111/ddi.12341
Cherednichenko O., Gorik V., Borodulina V. 2016. Herb vegetation diversity in the north of Central Forest Reserve (Tver province, Russia). In: 25th Meeting of European Vegetation Survey. Italy, Roma: Sapienza University. P. 26.
Cherepanov A.S. 2011. Vegetation indices. Geomatika 2: 98–102. [In Russian]
Ciarniello L.M., Boyce M.S., Heard D.C., Seip D.R. 2007. Components of grizzly bear habitat selection: density, habitats, roads, and mortality risks. Journal of Wildlife Management 71(5): 1446–1457. DOI: 10.2193/2006-229
Clements G.R., Rayan D.M., Aziz S.A., Kawanishi K., Traeholt C., Magintatn D., Yazi M.F.A., Tingley R. 2012. Predicting the distribution of the Asian Tapir (Tapirus indicus) in Peninsular Malaysia using maximum entropy modelling. Integrative Zoology 7(4): 400–406. DOI: 10.1111/j.1749-4877.2012.00314.x
Clevenger A.P., Purroy F.J., Pelton M.R. 1992. Brown bear (Ursus arctos L.) habitat use in the Cantabrian Mountains, Spain. Mammalia 56(2): 203–214. DOI: 10.1515/mamm-1992-0204
Clevenger A.P., Purroy F.J., Campos M.A. 1997. Habitat assessment of a relict brown bear population in Northern Spain. Biological Conservation 80(1): 17–22. DOI: 10.1016/S0006-3207(96)00081-X
Congedo L. 2014. Semi-Automatic Classification Plugin. Documentation. 106 p.
Corsi F., De Leeuw J., Skidmore A. 2000. Modelling Species Distribution with GIS. In: L. Boitani, K. Fuller (Eds.): Research techniques in animal ecology: controversies and consequences. New York: Columbia University Press. P. 389–425.
Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., García Marquéz J.R., Gruber B., Lafourcade B., Leitão P.J., Münkemüller T., McClean C., Osborne P.E., Reineking B., Schröder B., Skidmore A.K., Zurell D., Lautenbach S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1): 27–46. DOI: 10.1111/j.1600-0587.2012.07348.x
Dubinin M. 2006. Vegetation indices. The list of indices and formulas for their definition. In: GIS-Lab. Available from: http://gis-lab.info/qa/vi.html [In Russian]
Dudov S.V. 2016. Modeling of species distribution using topography and remote sensing data, with vascular plants of the Tukuringra Range low mountain belt (Zeya State Nature Reserve, Amur Region) as a case study. Zhurnal Obshchei Biologii 77(2): 122–134. [In Russian]
Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehman A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29(2): 129–151. DOI: 10.1111/j.2006.0906-7590.04596.x
Elith J., Phillips S.J., Hastie T., Dudík M., Chee Y.E., Yates C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57. DOI: 10.1111/j.1472-4642.2010.00725.x
Eriksson T., Dalerum F. 2018. A MaxEnt approach to identify potential range expansion areas for an expanding wolf population. Biological Conservation 220: 170–181. DOI: 10.1016/j.biocon.2018.02.019
Farashi A., Parvian N., Najafabadi M.S. 2016. Land Use and Land Cover Change in Protected Areas: Using Remote Sensing to Survey Suitable Habitats of Brown Bear Ursus arctos. Polish Journal of Ecology 64(3): 420–430. DOI: 10.3161/15052249PJE2016.64.3.011
Fekede R.J., van Gils H., Huang L., Wang X. 2018. High probability areas for ASF infection in China along the Russian and Korean borders. Transboundary and Emergence Diseases 66(2): 852–864. DOI: 10.1111/tbed.13094
Fielding A.H., Bell J.F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24(1): 38–49. DOI: 10.1017/S0376892997000088
Frans V.F., Augé A.A., Edelhoff H., Erasmi S., Balkenhol N., Engler J.O. 2018. Quantifying apart what belongs together: A multi‐state species distribution modelling framework for species using distinct habitats. Methods in Ecology and Evolution 9(1): 98–108. DOI: 10.1111/2041-210X.12847
Freire Filho R., Palmeirim J.M. 2019. Potential distribution of and priority conservation areas for the Endangered Caatinga howler monkey Alouatta ululata in north-eastern Brazil. Oryx. DOI: 10.1017/S0030605318001084
Gao B.C. 1996. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58(3): 257–266. DOI: 10.1016/S0034-4257(96)00067-3
Garrote G., Fernández-López J., López G., Ruiz G., Simón M.A. 2018. Prediction of Iberian lynx road–mortality in southern Spain: a new approach using the MaxEnt algorithm. Animal Biodiversity and Conservation 41(2): 217–225. DOI: 10.32800/abc.2018.41.0217
Ghoddousi A. 2010. Habitat suitability modelling of the Brown bear Ursus arctos in Croatia and Slovenia using telemetry data. MSc Thesis. London: Imperial College London. 71 p.
Glover-Kapfer P. 2015. A training manual for habitat suitability and connectivity modeling using tigers (Panthera tigris) in Bhutan as example. Technical Report. WWF – Bhutan. 46 p. DOI: 10.13140/RG.2.2.34804.86409
Gomez J.J., Túnez J.I., Fracassi N., Cassini M.H. 2014. Habitat suitability and anthropogenic correlates of Neotropical river otter (Lontra longicaudis) distribution. Journal of Mammalogy 95(4): 824–833. DOI: 10.1644/13-MAMM-A-265
Guisan A., Zimmermann N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135 (2–3): 147–186. DOI: 10.1016/S0304-3800(00)00354-9
Guisan A., Thuiller W., Zimmermann N.E. 2017. Habitat suitability and distribution models. Cambridge: Cambridge University Press. 462 p.
Güthlin D., Knauer F., Kneip T., Küchenhoff H., Kaczensky P., Rauer G., Jonozovič M., Mustoni A., Jerina K. 2011. Estimating habitat suitability and potential population size for brown bears in the Eastern Alps. Biological Conservation 144(5): 1733–1741. DOI: 10.1016/j.biocon.2011.03.010
Gynchev R. 1993. Study of the brown bear diet in Stara Planina. In: Bears of Russia and adjacent countries the status of populations. Part 1. Moscow: Argus. P. 70–74. [In Russian]
Harris L.D., Kangas P. 1988. Reconsideration of the habitat concept. In: R.E. McCabe (Ed.): Transactions of the 53rd North American Wildlife and Natural Resources Conference. Washington, DC.: Wildlife Management Institute. P. 137–143.
Hertel A.G., Steyaert S.M.J.G., Zedrosser A., Mysterud A., Lodberg-Holm H.K., Gelink H.W., Kindberg J., Swenson J.E. 2016. Bears and berries: species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behavioral Ecology and Sociobiology 70(6): 831–842. DOI 10.1007/s00265-016-2106-2
Hijmans R.J., Phillips S., Leathwick J., Elith J. 2017. Package 'dismo', version 1.1-4. Species Distribution Modeling. 68 p.
Hirzel A.H., Le Lay G. 2008. Habitat suitability modelling and niche theory. Journal of Applied Ecology 45(5): 1372–1381. DOI: 10.1111/j.1365-2664.2008.01524.x
Hirzel A.H., Helfer V., Metral F. 2001. Assessing habitat-suitability models with a virtual species. Ecological Modelling 145(2–3): 111–121. DOI: 10.1016/S0304-3800(01)00396-9
Hirzel A.H., Le Lay G., Helfer V., Randin C., Guisan A. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling 199(2): 142–152. DOI: 10.1016/j.ecolmodel.2006.05.017
Isachenko T.I. 1980. South taiga forests. In: S.A. Gribova, T.I. Isachenko, E.M. Lavrenko (Eds.): Vegetation of the European part of the USSR. Leningrad: Nauka. P. 93–96. [In Russian]
Johansen T. 1997. The diet of the brown bear (Ursus arctos) in central Sweden. MSc Thesis. Trondheim: Norwegian University of Science and Technology. 36 p.
Kalboussi M., Achour H. 2017. Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entropy (Maxent) and Geographic Information System (GIS). Journal of Forestry Research 29(1): 233–245. DOI: 10.1007/s11676-017-0436-1
Kalkvik H.M., Stout I.J., Doonan T.J., Parkinson C.L. 2012. Investigating niche and lineage diversification in widely distributed taxa: phylogeography and ecological niche modeling of the Peromyscus maniculatus species group. Ecography 35(1): 54–64. DOI: 10.1111/j.1600-0587.2011.06994.x
Kaufman Y.J., Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. In: IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE. P. 261–270.
Kobler A., Adamic M. 2000. Identifying brown bear habitat by a combined GIS and machine learning method. Ecological Modelling 135(2–3): 291–300. DOI: 10.1016/S0304-3800(00)00384-7
Kozlov D.N., Puzachenko M.Yu., Fedyaeva M.V., Puzachenko Yu.G. 2008. Mapping the spatial variation of landscape cover properties based on distnational information and a digital elevation model. Izvestiya Akademii Nauk, Seriya Geograficheskaya 4: 112–124. [In Russian]
Kramer-Schadt S., Niedballa J., Pilgrim J.D., Schröder B., Lindenborn J., Reinfelder V., Stillfried M., Heckmann I., Scharf A.K., Augeri D.M., Cheyne S.M., Hearn A.J., Ross J., Macdonald D.W., Mathai J., Eaton J., Marshall A.J., Semiadi G., Rustam R., Bernard H., Alfred R., Samejima H., Duckworth J.W., Breitenmoser-Wuersten C., Belant J.L., Hofer H., Wilting A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19(11): 1366–1379. DOI: 10.1111/ddi.12096
Kurbanov E.A., Vorobyev O.N., Polevshchikova Yu.A., Nezamaev S.A., Demishcheva Ye.N. 2013. Comparative analysis of high-resolution satellite images when deciphering tree stands contaminated with silicate production waste. Vestnik of Volga State University of Technology 2: 74–90. [In Russian]
Kusak J., Huber D. 1998. Brown bear habitat quality in Gorski kotar, Croatia. Ursus 10: 281–291.
Lahoz-Monfort J.J., Guillera-Arroita G., Wintle B.A. 2014. Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography 23(4): 504–515. DOI: 10.1111/geb.12138
Li W., Guo Q.E.C., Elkan C. 2011. Can we model the probability of presence of species without absence data? Ecography 34(6): 1096–1105. DOI: 10.1111/j.1600-0587.2011.06888.x
Libal N.S., Belant J.L., Leopold B.D., Wang G., Owen P.A. 2011. Despotism and risk of infanticide influence grizzly bear den-site selection. PLoS ONE 6(9): e24133. DOI: 10.1371/journal.pone.0024133
Lissovsky A.A., Obolenskaya E.V. 2014. A study of the distribution ranges of small mammals from South-Eastern Transbaikalia with ecological niche modeling methods. Zhurnal Obshchei Biologii 75(5): 353–371. [In Russian]
Liu C., Berry P.M., Dawson T.P., Pearson R.G. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28(3): 385–393. DOI: 10.1111/j.0906-7590.2005.03957.x
Liu C., White M., Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40(4): 778–789. DOI: 10.1111/jbi.12058
Lobo J.M., Jiménez-Valverde A., Real R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17(2): 145–151. DOI: 10.1111/j.1466-8238.2007.00358.x
Lobo J., Jiménez-Valverde A., Hortal J. 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33(1): 103–114. DOI: 10.1111/j.1600-0587.2009.06039.x
Maiorano L., Boitani L., Monaco A., Tosoni E., Ciucci P. 2015. Modeling the distribution of Apennine brown bears during hyperphagia to reduce the impact of wild boar hunting. European Journal of Wildlife Research 61(2): 241–253. DOI: 10.1007/s10344-014-0894-0
Markov N., Pankova N., Morelle K. 2019. Where winter rules: Modeling wild boar distribution in its north-eastern range. Science of the Total Environment 687: 1055–1064. DOI: 10.1016/j.scitotenv.2019.06.157
Martin J., Basille M., Van Moorter B., Kindberg J., Allainé D., Swenson J.E. 2010. Coping with human disturbance: spatial and temporal tactics of the brown bear (Ursus arctos). Canadian Journal of Zoology 88(9): 875–883. DOI: 10.1139/Z10-053
Martin J., Revilla E., Quenette P.Y., Naves J., Allainé D., Swenson J.E. 2012. Brown bear habitat suitability in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. Journal of Applied Ecology 49(3): 621–631. DOI: 10.1111/j.1365-2664.2012.02139.x
Mateo-Sánchez M.C., Cushman S.A. Saura S. 2013. Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). International Journal of Geographical Information Science 28(8): 1531–1546. DOI: 10.1080/13658816.2013.776684
Mateo-Sánchez M.C., Gastón A., Ciudad C., García-Viñas J.I., Cuevas J., López-Leiva C., Fernández-Landa A., Algeet-Abarquero N.A., Marchamalo M., Fortin M.J., Saura S. 2016. Seasonal and temporal changes in species use of the landscape: how do they impact the inferences from multiscale habitat modeling? Landscape Ecology 31(6): 1261–1276. DOI: 10.1007/s10980-015-0324-z
Matyukhina D.S., Miquell D.D., Murzin A.A., Pikunov D.G., Fomenko P.V., Aramilev V.V., Litvinov M.N., Salkina G.P., Seryodkin I.V., Nikolaev I.G., Kostyrya A.V., Gaponov V.V., Yudin V.G., Dunishenko Yu.M., Smirnov E.N., Korkishko V.G. 2014. Assessing influence of environmental parameters on Amur tiger distribution in the Russian Far East using MaxEnt modeling approach. Achievements in the life sciences 9: 118–126. [In Russian]
Merow C., Smith M.J., Silander Jr. J.A. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36(10): 1058–1069. DOI: 10.1111/j.1600-0587.2013.07872.x
Mertzanis G., Kallimanis A., Kanellopoulos N., Sgardelis S., Tragos A., Aravidis I. 2008. Brown bear (Ursus arctos L.) habitat use patterns in two regions of northern Pindos, Greece – management implications. Journal of Natural History 42(5–8): 301–315. DOI: 10.1080/00222930701835175
Mitchell M.S., Zimmerman J.W., Powell R.A. 2002. Test of a Habitat Suitability Index for Black Bears in the Southern Appalachians. Wildlife Society Bulletin 30(3): 794–808. DOI: 10.2307/3784233
Monserud R.A., Leemans R. 1992. Comparing global vegetation maps with Kappa statistic. Ecological Modelling 62(4): 275–293. DOI: 10.1016/0304-3800(92)90003-W
Motohka T., Nasahara K.N., Oguma H., Tsuchida S. 2010. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sensing 2(10): 2369–2387. DOI: 10.3390/rs2102369
Moya W., Jacome G., Yoo C. 2017. Past, current, and future trends of red spiny lobster based on PCA with MaxEnt model in Galapagos Islands, Ecuador. Ecology and Evolution 7(13): 4881–4890. DOI: 10.1002/ece3.3054
Munro R.H.M., Nielsen S.E., Price M.H., Stenhouse G.B., Boyce M.S. 2006. Seasonal and diel patterns of grizzly bear diet and activity in West-Central Alberta. Journal of Mammalogy 87(6): 1112–1121. DOI: 10.1644/05-MAMM-A-410R3.1
Muscarella R., Galante P.J., Soley-Guardia M., Boria R.A., Kass J.M., Uriarte M., Anderson R.P. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods in Ecology and Evolution 5(11): 1198–1205. DOI: 10.1111/2041-210X.12261
Muscarella R., Galante P.J., Soley-Guardia M., Boria R.A., Kass J.M., Uriarte M., Anderson R.P. 2018. Package 'ENMeval', version 0.3.0. Automated Runs and Evaluations of Ecological Niche Models. 26 p.
Nielsen S.E., Boyce M.S., Stenhouse G.B., Munro R.H.M. 2002. Modeling grizzly bear habitats in the Yellowhead ecosystem of Alberta: taking autocorrelation seriously. Ursus 13: 45–56.
Ogurtsov S.S. 2015. Quantitative characteristics of the brown bear (Ursus arctos L.) feeding with Umbelliferae plants. Proceedings of Kazan University. Natural Sciences Series 157(1): 114–126. [In Russian]
Ogurtsov S.S. 2016. Brown bear habitat suitability modelling based on remote sensing data. Theriofauna of Russia and adjacent territories. In: X Congress of the Theriological Society of RAS. Moscow: KMK Scientific Press Ltd. P. 294. [In Russian]
Ogurtsov S.S. 2018. The Diet of the Brown Bear (Ursus arctos) in the Central Forest Nature Reserve (West-European Russia), Based on Scat Analysis Data. Biology Bulletin 45(9): 1039–1054. DOI: 10.1134/S1062359018090145
Ogurtsov S.S., Fedoseeva E.B. 2018. Ants in the diet of a brown bear (Ursus arctos) in the Central Forest Nature Reserve. In: Ants and forest protection. Materials of the XV All-Russian Myrmecological Symposium. Ekaterinburg: UGLTU. P. 141–147. [In Russian]
Ogurtsov S.S., Zheltukhina Yu.S. 2017. The behaviour of the brown bear (Ursus arctos) during eating by apples: the experience of using camera traps with video mode. In: Nature reserves – the guarantor of the future. Ulan-Ude: BNTS SB RAS Publishing House. P. 195–200. [In Russian]
Ogurtsov S.S., Zheltukhin A.S., Puzachenko Yu.G., Sandlersky R.B. 2016. The use of remote sensing and GIS data for the brown bear (Ursus arctos L.) habitat suitability mapping in the Central Forest Reserve. In: Research investigations in Russian nature reserves and national parks. Petrozavodsk: Karelian Research Centre of RAS. P. 168. [In Russian]
Ogurtsov S.S., Makarova O.A., Polikarpova N.V., Kopatz A., Eiken H.G., Hagen S.B. 2017. The results of the study the brown bear population in the Russian part of the Pasvik-Inari Trilateral park according to DNA analysis and camera traps. Transactions of the Karelian Research Centre of the Russian Academy of Sciences 9: 58–72. DOI: 10.17076/eco494 [In Russian]
Pal M., Mather P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment 86(4): 554–565. DOI: 10.1016/S0034-4257(03)00132-9
Pazhetnov V.S., Pazhetnova S.I. 1991. The significance of high bogs in the life of a brown bear. In: Bogs of Protected Areas: problems of protection and monitoring: abstracts of the XI All-Union Field Workshop-Excursion on wetlands. Leningrad. P. 121–124. [In Russian]
Pazhetnov V.S. 1993. Brown bear. Centre of the European Russia. In: Bears: brown bear, polar bear, Asiatic black bear. Moscow: Nauka. P. 51–58. [In Russian]
Pearce J., Boyce M. 2006. Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43(3): 405–412. DOI: 10.1111/j.1365-2664.2005.01112.x
Pearson R.G., Raxworthy C., Nakamura M., Peterson A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34(1): 102–117. DOI: 10.1111/j.1365-2699.2006.01594.x
Phillips S.J. 2010. A Brief Tutorial on Maxent. Lessons in Conservation 3: 108–135.
Phillips S.J., Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161–175. DOI: 10.1111/j.2007.0906-7590.05203.x
Phillips S.J., Dudík M., Schapire R.E. 2004. A Maximum Entropy Approach to Species Distribution Modeling. In: Proceedings of the 21st International Conference on Machine Learning. Banff, Canada. P. 655–662.
Phillips S.J., Anderson R.P., Schapire R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3–4): 231–259. DOI: 10.1016/j.ecolmodel.2005.03.026
Phillips S.J., Dudík M., Elith J., Graham C.H., Lehmann A., Leathwick J., Ferrier S. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19(1): 181–197. DOI: 10.1890/07-2153.1
Phillips S.J., Anderson R.P., Dudík M., Schapire R.E., Blair M.E. 2017. Opening the black-box: an open-source release of Maxent. Ecography 40(7): 887–893. DOI: 10.1111/ecog.03049
Phillips S.J., Dudík M., Schapire R.E. 2018. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from: http://biodiversityinformatics.amnh.org/open_source/maxent/
Piédallu B., Quenette P.Y., Bombillon N., Gastineau A., Miquel C., Gimenez O. 2017. Determinants and patterns of habitat use by the brown bear Ursus arctos in the French Pyrenees revealed by occupancy modelling. Oryx 53(2): 334–343. DOI: 10.1017/s0030605317000321
Posillico M., Meriggi A., Pagnin E., Lovari S., Russo L. 2004. A habitat model for brown bear conservation and land use planning in the central Apennines. Biological Conservation 118(2): 141–150. DOI: 10.1016/j.biocon.2003.07.017
Priti H., Aravind N.A., Uma Shaanker R., Ravikanth G. 2016. Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecological Engineering 89: 14–23. DOI: 10.1016/j.ecoleng.2016.01.006
Puzachenko Yu.G., Kozlov D.N. 2007. Geomorphological history of the development of the territory of the Central Forest Reserve. Proceedings of the Central Forest State Nature Reserve 4: 125–159. [In Russian]
Puzachenko Yu.G., Zheltukhin A.S., Sandlersky R.B. 2010. Analysis of the spatial-temporal dynamics of the ecological niche on the example of the forest marten population (Martes martes). Zhurnal Obshchei Biologii 71(6): 467–487. [In Russian]
R Development Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: http://www.R-project.org
Radosavljevic A., Anderson R.P. 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41(4): 629–643. DOI: 10.1111/jbi.12227
Remya K., Ramachandran A., Jayakumar S. 2015. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineering 82: 184–188. DOI: 10.1016/j.ecoleng.2015.04.053
Rigg R., Gorman M. 2005. Diet of brown bears (Ursus arctos): New results from the Tatras region and a comparison of research methods. Výskum a ochrana cicavcov na Slovensku 7: 61–79.
Riley S.J., Degloria S.D., Elliot S.D. 1999. A Terrain Ruggedness Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5(1–4): 23–27.
Rouse J.W., Haas R.H., Schell J.A., Deering D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. In: Third ERTS Symposium, NASA SP-351. Vol. 1. Washington, DC. P. 309–317.
Rykov A.M. 1987. Ecology of a brown bear in the Middle Pinezhye. In: Ecology of bears. Novosibirsk: Nauka. P. 76–84. [In Russian]
Schoen J.W., Flynn R.W., Suring L.H., Titus K., Beier L.R. 1994. Habitat-capability model for brown bear in Southeast Alaska. Ursus 9(1): 327–337. DOI: 10.2307/3872718
Servheen C., Herrero S., Peyton B. 1998. Bears. Status Survey and Conservation Action Plan. Gland, Switzerland and Cambridge, UK: IUCN/SSC Bear and Polar Bear Specialist Groups. 309 p.
Sidorovich V.E. 2006. Ecological studies of brown bear (Ursus arctos) in Belarus: Distribution, population trends and dietary structure. Acta Zoologica Lituanica 16(3): 185–190. DOI: 10.1080/13921657.2006.10512729
Smirnova O.V., Shaposhnikov E.S. (Eds.). 1999. Succession Processes in Russian Nature Reserves and Problems of Biodiversity Conservation. St. Petersburg: RBO. 549 p. [In Russian]
Su J., Aryal A., Hegab I.M., Shrestha U.B., Coogan S.C.P., Sathyakumar S., Dalannast M., Dou Z., Suo Y., Dabu X., Fu H., Wu L., Ji W. 2018. Decreasing brown bear (Ursus arctos) habitat due to climate change in Central Asia and the Asian Highlands. Ecology and Evolution 8(23): 11887–11899. DOI:10.1002/ece3.4645
Syfert M.M., Smith M.J., Coomes D.A. 2013. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8(7): e55158. DOI: 10.1371/journal.pone.0055158
Thapa A., Wu R., Hu Y., Nie Y., Singh P., Khatiwada J.R., Yan L., Gu X., Wei F. 2018. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecology and Evolution 8(21): 10542–10554. DOI: 10.1002/ece3.4526
Turney L., Roberts A.M. 2004. Grizzly Bear Spring, Summer, and Fall – Habitat Suitability Models. Morice and Lakes Forest Districts IFPA: Ardea Biological Consulting. 24 p.
USGS. 2015. Landsat 8 (L8) data users handbook. Version 1.0. Earth Resources Observation and Science (EROS) Center 8. 98 p.
Van Gils H., Westinga E., Carafa M., Antonucci A., Ciaschetti G. 2014. Where the bears roam in Majella National Park, Italy. Journal for Nature Conservation 22(1): 23–34. DOI: 10.1016/j.jnc.2013.08.001
Varela S., Anderson R.P., García-Valdés R., Fernández-González F. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37(11): 1084–1091. DOI: 10.1111/j.1600-0587.2013.00441.x
Vulla E., Hobson K.A., Korsten M., Leht M., Martin A-J., Lind A., Männil P., Valdmann H., Saarma U. 2009. Carnivory is positively correlated with latitude among omnivorous mammals: Evidence from brown bears, badgers and pine martens. Annales Zoologici Fennici 46(6): 395–415. DOI: 10.5735/086.046.0601
Warren D.L., Glor R.E., Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3): 607–611. DOI: 10.1111/j.1600-0587.2009.06142.x
Warren D.L., Seifert S.N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21(2): 335–342. DOI: 10.1890/10-1171.1
Yiwen Z., Wei L.B., Yeo D.C.J. 2016. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecological Modelling 341: 5–13. DOI: 10.1016/j.ecolmodel.2016.09.019
Young N., Carter L., Evangelista P., Jarnevich C. 2011. A MaxEnt model v.3.3.3e tutorial (ArcGIS v.10). Fort Collins, Colorado: Natural Resource Ecology Laboratory at Colorado State University and the National Institute of Invasive Species Science. P. 1–30.
Zarzo-Arias A., Penteriani V., Delgado M.d.M., Peón Torre P., García-González R., Mateo-Sánchez M.C., García P.V., Dalerum F. 2019. Identifying potential areas of expansion for the endangered brown bear (Ursus arctos) population in the Cantabrian Mountains (NW Spain). PLoS ONE 14 (1): e0209972. DOI: 10.1371/journal.pone.0209972
Zheltukhin A.S., Puzachenko Yu.G., Sandlersky R.B. 2009. Assessment of the quality of animal habitats based on tracking of trace activity and distance information. Siberian Ecological Journal 3: 341–351. [In Russian]
Zheltukhin A.S., Puzachenko Yu.G., Kotlov I.P., Shironya I.I., Sandlersky R.B. 2016. Spatio-temporal dynamics of forest marten (Martes martes L.), white hare (Lepus timidus L.) and squirrels (Sciurus vulgaris L.) in the European southern taiga. Zhurnal Obshchei Biologii 77(4): 33–54. [In Russian]
Zheltukhin A.S., Ogurtsov S.S. 2018. Camera traps in monitoring of forest mammals and birds. Tver: Polypress. 54 p. [In Russian]
Ziółkowska E., Ostapowicz K., Radeloff V.C., Kuemmerle T., Sergiel A., Zwijacz-Kozica T., Zięba F., Śmietana W., Selva N. 2016. Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians. Landscape Ecology 31(8): 1863–1882. DOI: 10.1007/s10980-016-0368-8