Статья

Название статьи СВЯЗЬ МЕЖДУ СЕЗОННОЙ ДИНАМИКОЙ ПОЧВЕННЫХ ГРИБОВ И ФАКТОРАМИ СРЕДЫ В ПРЕОБЛАДАЮЩИХ ТИПАХ ЛЕСА БРЯНСКОГО ПОЛЕСЬЯ (ЕВРОПЕЙСКАЯ РОССИЯ)
Авторы

Антон Дмитриевич Катаев, н.с. Центра по проблемам экологии и продуктивности лесов РАН (117997, Россия, г. Москва, ул. Профсоюзная, д. 84/32, стр. 14); iD ORCID: https://orcid.org/0009-0001-5245-3322; e-mail: talion08@bk.ru
Анастасия Игоревна Кузнецова, к.б.н., м.н.с. Центра по проблемам экологии и продуктивности лесов РАН (117997, Россия, г. Москва, ул. Профсоюзная, д. 84/32, стр. 14); iD ORCID: https://orcid.org/0000-0002-5414-2587; e-mail: nasta472288813@yandex.ru
Василий Андреевич Кузнецов, к.б.н., доцент Московского государственного университета имени М.В. Ломоносова (119991, Россия, г. Москва, Ленинские горы, д.1); н.с. Центра по проблемам экологии и продуктивности лесов РАН (117997, Россия, г. Москва, ул. Профсоюзная, д. 84/32, стр. 14); iD ORCID: https://orcid.org/0000-0001-9498-6285; e-mail: kuznetsovvvasiliy@gmail.com
Алексей Владимирович Горнов, к.б.н., заместитель директора и с.н.с. Центра по проблемам экологии и продуктивности лесов РАН (117997, Россия, г. Москва, ул. Профсоюзная, д. 84/32, стр. 14); iD ORCID: https://orcid.org/0000-0002-2940-7117; e-mail: aleksey-gornov@yandex.ru
Дарья Николаевна Тебенькова, к.б.н., заместитель директора и с.н.с. Центра по проблемам экологии и продуктивности лесов РАН (117997, Россия, г. Москва, ул. Профсоюзная, д. 84/32, стр. 14); iD ORCID: https://orcid.org/0000-0001-9240-5395; e-mail: tebenkova.dn@gmail.com
Мария Владимировна Горнова, к.б.н., н.с. Центра по проблемам экологии и продуктивности лесов РАН (117997, Россия, г. Москва, ул. Профсоюзная, д. 84/32, стр. 14); e-mail: mariya_harlampieva@mail.ru
Евгения Юрьевна Кайгордова, с.н.с. государственного природного биосферного заповедника «Брянский Лес» (242180, Россия, Брянская область, Суземский район, станция Нерусса, ул. Заповедная, д. 2); e-mail: kaikai@bk.ru
Алена Дмитриевна Никитина, м.н.с. Центра по проблемам экологии и продуктивности лесов РАН (117997, Россия, г. Москва, ул. Профсоюзная, д. 84/32, стр. 14); iD ORCID: https://orcid.org/0009-0007-9939-778X; e-mail: nikitina.al.dm@gmail.com

Библиографическое описание статьи

Kataev A.D., Kuznetsova A.I., Kuznetsov V.A., Gornov A.V., Tebenkova D.N., Gornova M.V., Kaygordova E.Yu., Nikitina A.D. 2023. Relationships between the seasonal dynamics of soil fungi biomass and environmental factors in predominating forest types in the Bryansk woodlands (European Russia) // Nature Conservation Research. Vol. 8(4). P. 112–125. https://dx.doi.org/10.24189/ncr.2023.035

Рубрика Оригинальные статьи
DOI https://dx.doi.org/10.24189/ncr.2023.035
Аннотация

Являясь важнейшей частью микробного пула лесной почвы, почвенные грибы в целом и микоризные грибы в частности являются важным объектом изучения, когда речь идет об устойчивости и сохранении лесных экосистем. С целью оценки сезонной динамики биомассы почвенных грибов в целом и эктомикоризных грибов в частности в течение вегетационного периода (май – ноябрь) и ее зависимости от биотических и абиотических факторов среды, таких как влажность почвы, температура и растительность, было проведено исследование в Государственном природном биосферном заповеднике «Брянский лес», расположенном в юго-восточной части Брянского полесья (Европейская Россия). Исследование проводилось в двух типах лесов: сосняках зеленомошно-кустарниковых и полидоминантных лиственно-широколиственных неморально-травных лесах с елью. Вегетационный период был разделен на три периода наблюдения: ранний (май – июль), средний (июль – сентябрь) и поздний (сентябрь – ноябрь). Метод, использованный для оценки биомассы грибов, представлял собой прямое микроскопическое наблюдение с окрашиванием образцов флуоресцеина диацетатом; для оценки биомассы эктомикоризных грибов отдельно использовали методы окапывания и сетчатых мешков. Полученные результаты свидетельствуют о том, что биомасса почвенных грибов увеличивается в обоих типах леса в течение вегетационного периода, в большей степени зависит от типа леса, количества доступной воды и сезонных изменений, в то время как влияние температуры менее выражено. В среднем биомасса почвенных грибов была выше в широколиственных лесах, при этом неэктомикоризный компонент имел сопоставимую биомассу в обоих типах. Динамика биомассы различалась в разных типах леса, однако заметные различия между ними были отмечены только в июле – сентябре. Биомасса эктомикоризных грибов была меньше, чем биомасса немикоризных грибов, но в то же время менее подвержена влиянию изменений влажности. Кроме того, исследования показали, что характеристики лесной подстилки могут существенно влиять на динамику биомассы грибов. Полученные данные могут быть полезны в дальнейших исследованиях микоризных грибов в условиях меняющегося климата.

Ключевые слова

государственный природный биосферный заповедник «Брянский лес», почвенная вода, температура, растительность, хвойно-широколиственные леса, эктомикоризные грибы

Информация о статье

Поступила: 25.05.2023. Исправлена: 05.10.2023. Принята к опубликованию: 10.10.2023.

Полный текст статьи
Список цитируемой литературы

Allen M.F. 2007. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal 6(2): 291–297. DOI: 10.2136/vzj2006.0068
Allen M.F., Kitajima K. 2014. Net primary production of ectomycorrhizas in a California forest. Fungal Ecology 10: 81–90. DOI: 10.1016/j.funeco.2014.01.007
Allison S.D., Treseder K.K. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology 14(12): 2898–2909. DOI: 10.1111/j.1365-2486.2008.01716.x
Anderson J.P.E., Domsch K.H. 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Canadian Journal of Microbiology 21(3): 314–322. DOI: 10.1139/m75-045
Bahr A., Ellström M., Akselsson C., Ekblad A., Mikusinska A., Wallander H. 2013. Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage. Soil Biology and Biochemistry 59: 38–48. DOI: 10.1016/j.soilbio.2013.01.004
Boddy L. 1993. Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycological Research 97(6): 641–655. DOI: 10.1016/S0953-7562(09)80141-X
Booth M.G. 2004. Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest. Ecology Letters 7(7): 538–546. DOI: 10.1111/j.1461-0248.2004.00605.x
Braun-Blanquet J. 1964. Pflanzensociologie. Vienna: Springer Vienna. 865 p.
Brundrett M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154(2): 275–304. DOI: 10.1046/j.1469-8137.2002.00397.x
Cairney J.W. 2012. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry 47: 198–208. DOI: 10.1016/j.soilbio.2011.12.029
Carteron A., Beigas M., Joly S., Turner B.L., Laliberté E. 2021. Temperate forests dominated by arbuscular or ectomycorrhizal fungi are characterized by strong shifts from saprotrophic to mycorrhizal fungi with increasing soil depth. Microbial Ecology 82(2): 377–390. DOI: 10.1007/s00248-020-01540-7
Clemmensen K.E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., Stenlid J., Finlay R.D., Wardle D.A., Lindahl B. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127): 1615–1618. DOI: 10.1126/science.1231923
Compant S., van der Heijden M.G.A., Sessitsch A. 2010. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiology Ecology 73(2): 197–214. DOI: 10.1111/j.1574-6941.2010.00900.x
Cornelissen J., Aerts R., Cerabolini B., Werger M., van der Heijden M. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129(4): 611–619. DOI: 10.1007/s004420100752
Craig M.E., Turner B.L., Liang C., Clay K., Johnson D.J., Phillips R.P. 2018. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Global Change Biology 24(8): 3317–3330. DOI: 10.1111/gcb.14132
Derome J., Nieminen T. 1998. Metal and macronutrient fluxes in heavy-metal polluted Scots pine ecosystems in SW Finland. Environmental Pollution 103(2–3): 219–228. DOI: 10.1016/S0269-7491(98)00118-3
Fisher F.M., Gosz J.R. 1986. Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest. Biology and Fertility of Soils 2(1): 35–42. DOI: 10.1007/BF00638959
Futai K., Taniguchi T., Kataoka R. 2008. Ectomycorrhizae and Their Importance in Forest Ecosystems. In: Z.A. Siddiqui, M.S. Akhtar, K. Futai (Eds.): Mycorrhizae: sustainable agriculture and forestry. Dordrecht: Springer. P. 241–285. DOI: 10.1007/978-1-4020-8770-7_11
Gonthier P., Giordano L., Zampieri E., Lione G., Vizzini A., Colpaert J.V., Balestrini R. 2019. An ectomycorrhizal symbiosis differently affects host susceptibility to two congeneric fungal pathogens. Fungal Ecology 39: 250–256. DOI: 10.1016/j.funeco.2018.12.008
Gornov A.V., Gornova M.V., Tikhonova E.V., Shevchenko N.E., Kuznetsova A.I., Ruchinskaya E.V., Tebenkova D.N. 2018. Population-based assessment of succession stage of mixed forests in european part of Russia. Russian Journal of Forest Science 4: 243–257. DOI: 10.1134/S0024114818040083 [In Russian]
Hawkes C.V., Kivlin S.N., Rocca J.D., Huguet V., Thomsen M.A., Suttle K.B. 2011. Fungal community responses to precipitation. Global Change Biology 17(4): 1637–1645. DOI: 10.1111/j.1365-2486.2010.02327.x
Heinemeyer A., Hartley I.P., Evans S.P., Carreira de La Fuente J.A., Ineson P. 2007. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology 13(8): 1786–1797. DOI: 10.1111/j.1365-2486.2007.01383.x
Hendricks J.J., Mitchell R.J., Kuehn K.A., Pecot S.D. 2016. Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest. New Phytologist 209(4): 1693–1704. DOI: 10.1111/nph.13729
IUSS Working Group WRB. 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports №106. Rome: FAO. 216 p.
Kaisermann A., Maron P.A., Beaumelle L., Lata J.C. 2015. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Applied Soil Ecology 86: 158–164. DOI: 10.1016/j.apsoil.2014.10.009
Karliński L. 2021. Biomass of external mycelium of ectomycorrhizal fungi associated with poplars – The impact of tree genotype, tree age and soil environment. Applied Soil Ecology 160: 103847. DOI: 10.1016/j.apsoil.2020.103847
Kazakova A.I., Semikolennykh A.A., Gornov A.V., Gornova M.V., Lukina N.V. 2018. Influence of vegetation on the lability characteristics of sandur areas of the Bryansky Les Nature Reserve. Moscow University Soil Science Bulletin 73(3): 100–106. DOI: 10.3103/S0147687418030055
Keller A.B., Brzostek E.R., Craig M.E., Fisher J.B., Phillips R.P. 2021. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecology Letters 24(4): 626–635. DOI: 10.1111/ele.13651
Kernaghan G. 2005. Mycorrhizal diversity: cause and effect?. Pedobiologia 49(6): 511–520. DOI: 10.1016/j.pedobi.2005.05.007
Korneykova M.V., Vasenev V.I., Nikitin D.A., Dolgikh A.V., Soshina A.S., Myazin V.A., Nakhaev M.R. 2022. Soil microbial community of urban green infrastructures in a polar city. Urban Ecosystems 25(5): 1399–1415. DOI: 10.1007/s11252-022-01233-8
Korneykova M.V., Myazin V.A., Fokina N.V., Chaporgina A.A., Nikitin D.A., Dolgikh A.V. 2023. Structure of Microbial Communities and Biological Activity in Tundra Soils of the Euro-Arctic Region (Rybachy Peninsula, Russia). Microorganisms 11(5): 1352. DOI: 10.3390/microorganisms11051352
Kropp B.R., Langlois C.G. 1990. Ectomycorrhizae in reforestation. Canadian Journal of Forest Research 20(4): 438–451. DOI: 10.1139/x90-061
Kuznetsova A.I., Lukina N.V., Tikhonova E.V., Gornov A.V., Gornova M.V., Smirnov V.E., Geraskina A.P., Shevchenko N.E., Tebenkova D.N., Chumachenko S.I. 2019. Carbon stock in sandy and loamy soils of coniferous–broadleaved forests at different succession stages. Eurasian Soil Science 52(7): 756–768. DOI: 10.1134/S1064229319070081
Laganière J., Paré D., Bergeron Y., Chen H.Y.H. 2012. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biology and Biochemistry 53: 18–27. DOI: 10.1016/j.soilbio.2012.04.024
Lukina N.V. 2018. Carbon accumulation and the succession status of forests. Moscow: KMK Scientific Press Ltd. 232 p. [In Russian]
Nikitin D.A., Chernov T.V., Zhelezova A.D., Tkhakakhova A.K., Nikitina S.A., Semenov M.V., Xenofontova N.A., Kutovaya O.V. 2019. Seasonal dynamics of microbial biomass in soddy-podzolic soil. Eurasian Soil Science 52(11): 1414–1421. DOI: 10.1134/S1064229319110073
Nikitin D.A., Semenov M.V., Ksenofontova N.A., Tkhakakhova A.K., Rusakova I.V., Lukin S.M. 2023. Effect of Fresh Organic Matter of Straw on Microbiological Parameters of Soddy-Podzolic Soil. Eurasian Soil Science 56(5): 651–662. DOI: 10.1134/s1064229322601950
Nilsson L.O., Giesler R., Bååth E., Wallander H. 2005. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist 165(2): 613–622. DOI: 10.1111/j.1469-8137.2004.01223.x
Okada K., Okada S., Yasue K., Fukuda M., Yamada A. 2011. Six-year monitoring of pine ectomycorrhizal biomass under a temperate monsoon climate indicates significant annual fluctuations in relation to climatic factors. Ecological Research 26(2): 411–419. DOI: 10.1007/s11284-011-0800-0
Osono T., Hagiwara Y., Masuya H. 2011. Effects of temperature and litter type on fungal growth and decomposition of leaf litter. Mycoscience 52(5): 327–332. DOI: 10.1007/S10267-011-0112-9
Pagano M.C. 2014. Drought stress and mycorrhizal plant. In: M. Miransari (Eds.): Use of Microbes for the Alleviation of Soil Stresses. Vol. 1. New York: Springer. P. 97–110. DOI: 10.1007/978-1-4614-9466-9_5
Pietikäinen J., Pettersson M., Bååth E. 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology 52(1): 49–58. DOI: 10.1016/j.femsec.2004.10.002
Read D.J., Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?. New Phytologist 157(3): 475–492. DOI: 10.1046/j.1469-8137.2003.00704.x
Sato Y., Kumagai T., Kume A., Otsuki K., Ogawa S. 2004. Experimental analysis of moisture dynamics of litter layers – the effects of rainfall conditions and leaf shapes. Hydrological Processes 18(16): 3007–3018. DOI: 10.1002/hyp.5746
Simard S., Austin M. 2010. The role of mycorrhizas in forest soil stability with climate change. In: S. Simard (Ed.): Climate change and variability. InTech (On-line). P. 275–302. DOI: 10.5772/9813
Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. London: Academic Press. 800 p.
Söderström B.E. 1977. Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biology and Biochemistry 9(1): 59–63. DOI: 10.1016/0038-0717(77)90061-X
Susyan E.A., Wirth S., Ananyeva N.D., Stolnikova E.V. 2011. Forest succession on abandoned arable soils in European Russia – Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity. European Journal of Soil Biology 47(3): 169–174. DOI: 10.1016/j.ejsobi.2011.04.002
Štursová M., Kohout P., Human Z.R., Baldrian P. 2020. Production of fungal mycelia in a temperate coniferous forest shows distinct seasonal patterns. Journal of Fungi 6(4): 190. DOI: 10.3390/jof6040190
Valdés R.C., Mendoza-Villarreal R., García F.G., González-Morales S., Sánchez-Peńa S. 2019. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. Southern Forests 81(1): 23–30. DOI: 10.2989/20702620.2018.1474415
Voříšková J., Brabcová V., Cajthaml T., Baldrian P. 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist 201(1): 269–278. DOI: 10.1111/nph.12481
Wallander H., Nilsson L.O., Hagerberg D., Bååth E. 2001. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist 151(3): 753–760. DOI: 10.1046/j.0028-646x.2001.00199.x
Wang C., Fu B., Zhang L., Xu Z. 2019. Soil moisture–plant interactions: an ecohydrological review. Journal of Soils and Sediments 19(1): 1–9. DOI: 10.1007/s11368-018-2167-0
Xu X.M. 1996. On estimating non-linear response of fungal development under fluctuating temperatures. Plant Pathology 45(2): 163–171. DOI: 10.1046/j.1365-3059.1996.d01-134.x
Zvyagintsev D.G. 1991. Methods of the soil microbiology and biochemistry. Moscow: Moscow State University. 304 p. [In Russian]