Abstract |
The population of Anser fabalis fabalis wintering in Europe have shown decline in recent decades. At the same time, the population dynamic of most migratory birds largely depends on the quality of migratory stopover sites, which are necessary to replenish internal reserves. The migration ecology of Anser fabalis fabalis wintering in Europe has not been sufficiently studied. Only in general terms we know about the timing of migration, while the places of key stopovers in Russia are not described. There is no information about conservation status of key sites and the intensity and duration of their use by Anser fabalis fabalis individuals. Without this knowledge, it is impossible to organise effective protection of any migrating population. We have analysed the dynamics and phenology of migrations, as well as the conservation status of stopover and pre-migration sites of Anser fabalis fabalis nesting in the forest zone of Western and Central Siberia and wintering in Northern Germany and Poland, based on data from GPS/GSM transmitters. We used data from 45 completed spring migrations from 25 tagged birds and 36 completed autumn migrations from 20 birds over the period 2019–2023. The migration start from wintering sites occurs in late February, on average 20 February ± 10.9 days. Arrival of the birds in the breeding areas occurs in late April, on average 01 May ± 9.4 days. Over 2019–2023, we found a trend for a shift in the dates of spring migration start (Mann-Kendall test: τ = -0.22, p < 0.05) and finish (Mann-Kendall test: τ = -0.35, p < 0.05) to earlier dates. Based on data from individual bird's migration routes, 1031 migration stopovers with a total duration of 3529.7 days were allocated. Of these, 616 (59.8%) stopovers were located in Russia, where the birds spent 1831 (51.9%) days. Key stopovers are located in the Baltic Region, the Sviyaga-Vyatka interfluve and the centre of the River Volga Region. The start of the autumn migration occurs between 27 September and 25 October, on average 18 October ± 7.9 days. The arrival at wintering sites occurs between 15 October and 11 December, on average 8 November ± 13.4 days. Over 2019–2023, there was a trend of an increasingly later arrival on wintering sites (Mann-Kendall test: τ = 0.45, p < 0.05). The start of the autumn migration occurred also later (Mann-Kendall test: τ = 0.44, p < 0.05). Pairs with broods are characterised by a longer autumn migration (Mann-Whitney test: U = 67.0, Z = 2.58, p < 0.001), and they spend significantly more time on the pre-migration sites (Mann-Whitney test: U = 71.5, Z = 2.29, p < 0.01) and autumn stopovers (Mann-Whitney test: U = 67.5, Z = 2.56, p < 0.01). The migration speed of pairs without broods was higher than of pairs with broods (Mann-Whitney test: U = 69.0, Z = -2.5, p < 0.01). Only 15.3% of stopovers are covered by the existing network of Protected Areas, where the Anser fabalis fabalis individuals spend only 19.2% of the total time. The results of this study can be used to develop an effective strategy for the Anser fabalis fabalis conservation during the period of migrations. We propose a hunting ban and/or the creation of Protected Areas within the main key stopover sites in Russia. |
References |
Artemyev A.V. 2020. Western Taiga Bean Goose. In: O.L. Kuznetsov (Ed.): Red Data Book of the Republic of Karelia. Belgorod: KONSTANTA. P. 310–312. [In Russian] Batbayar N., Yi K., Zhang J., Natsagdorj T., Damba I., Cao L., Fox A.D. 2021. Combining Tracking and Remote Sensing to Identify Critical Year-Round Site, Habitat Use and Migratory Connectivity of a Threatened Waterbird Species. Remote Sensing 13(20): 40–49. DOI: 10.3390/rs13204049 Bourski O.V. 2020. Shift of bird nesting time in Central Siberia due to climate warming: Phenotypic plasticity or genetic shift?. Zhurnal Obshchei Biologii 81(3): 208–222. DOI: 10.31857/S0044459620030033 [In Russian] Calvert A.M., Gauthier G., Reed E.T., Bélanger L., Giroux J.F., Gobeil J.F., Huang M., Lefebvre J., Reed A. 2007. Present status of the population and evaluation of the effects of the special conservation measures. In: Evaluation of the special conservation measures for greater snow geese: report of the greater snow goose working group. Arctic Goose Joint Venture Special Publication. Québec, Sainte-Foy: Canadian Wildlife Service. P. 5–64. Chudzińska M.E., Nabe-Nielsen J., Nolet B.A., Madsen J., 2016. Foraging behaviour and fuel accumulation of capital breeders during spring migration as derived from a combination of satellite- and ground-based observations. Journal Avian Biology 47(4): 563–574. DOI: 10.1111/jav.00899 Cohen J.M., Lajeunesse M.J., Rohr J.R. 2018. A global synthesis of animal phenological responses to climate change. Nature Climate Change 8: 224–228. DOI: 10.1038/s41558-018-0067-3 Emelyanov V.I., Rozenfeld S.B. 2022. Western Taiga Bean Goose. In A.P. Savchenko (Ed.): Red Data Book of the Krasnoyarsky Krai. Krasnoyarsk. P. 81. [In Russian] Erdenechimeg B., Purev-Ochir G., Gungaa A., Terbish O., Zhao Y., Guo Y. 2023. Migration pattern, habitat use, and conservation status of the Eastern Common Crane (Grus grus lilfordi) from Eastern Mongolia. Animals 13(14): 2287. DOI: 10.3390/ani13142287 Féret M., Gauthier G., Béchet A., Giroux J.F., Hobson K.A. 2003. Effect of a spring hunt on nutrient storage by Greater Snow Geese in southern Québec. Journal of Wildlife Management 67(4): 796–807. DOI: 10.2307/3802687 Fox A.D., Leafloor J.O. (Eds.). 2018. A Global Audit of the Status and Trends of Arctic and Northern Hemisphere Goose Populations (Component 2: Population accounts). Akureyri, Iceland: Conservation of Arctic Flora and Fauna International Secretariat. 174 p. Guo F., Buler J.J., Smolinsky J.A., Wilcove D.S. 2024. Seasonal patterns and protection status of stopover hotspots for migratory landbirds in the eastern United States. Current Biology 34(2): 235–244. DOI: 10.1016/j.cub.2023.11.033 Hijmans R.J., Williams E., Vennes C., Hijmans M.R.J. 2017. Package «geosphere». Spherical Trigonometry 1(7): 1–45. Jensen G., Baveco H., Johnson F., Madsen J. 2022. EGMP Population Status and Assessment Report 2022. AEWA Technical Report. Helsinki, Finland. 56 p. Jetz W., Tertitski G., Kays R., Mueller U., Wikelski M., et al. 2022. Biological Earth observation with animal sensors. Trends in Ecology and Evolution 37(4): 293–298. DOI: 10.1016/j.tree.2021.11.011 Kamp J., Oppel S., Ananin A.A., Durnev Y.A., Gashev S.N., Hölzel N., Mishchenko A.L., Pessa J., Smirenski S.M., Strelnikov E.G., Timonen S., Wolanska K., Chan S. 2015. Global population collapse in a superabundant migratory bird and illegal trapping in China. Conservation Biology 29(6): 1684–1694. DOI: 10.1111/cobi.12537 Klaassen R.H., Hake M., Strandberg R., Koks B.J., Trierweiler C., Exo K.M., Bairlein F., Alerstam T. 2014. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. Journal of Animal Ecology 83(1): 176–184. DOI: 10.1111/1365-2656.12135 Kortesalmi P., Pääkkönen S., Valkonen J.K., Nokelainen O. 2023. Bean Goose migration shows a long-term temporal shift to earlier spring, but not to later autumn migration in Finland. Ornis Fennica 100(2): 61–68. DOI: 10.51812/of.119806 Lehikoinen A., Lindén A., Karlsson M., Andersson A., Crewe T.L., Dunn E.H., Gregory G., Karlsson L., Kristiansen V., Mackenzie S., Newman S., Røer J.E., Sharpe C., Sokolov L.V., Steinholtz Å., Stervander M., Tirri I.S., Tjørnløv R.S. 2019. Phenology of the avian spring migratory passage in Europe and North America: Asymmetric advancement in time and increase in duration. Ecological Indicators 101: 985–991. DOI: 10.1016/j.ecolind.2019.01.083 Lei J., Jia Y., Zuo A., Zeng Q., Shi L., Zhou Y., Zhang H., Lu C., Lei G., Wen L. 2019. Bird satellite tracking revealed critical protection gaps in East Asian–Australasian Flyway. International Journal of Environmental Research and Public Health 16(7): 1147. DOI: 10.3390/ijerph16071147 LeTourneux F., Grandmont T., Dulude-de Broin F., Martin M.C., Lefebvre J., Kato A., Bêty J., Gauthier G., Legagneux P. 2021. COVID19-induced reduction in human disturbance enhances fattening of an overabundant goose species. Biological Conservation 255: 108968. DOI: 10.1016/j.biocon.2021.108968 Mainguy J., Bêty J., Gauthier G., Giroux J.F. 2002. Are body condition and reproductive effort of laying Greater Snow Geese affected by the spring hunt?. Condor 104(1): 156–161. DOI: 10.1093/condor/104.1.156 Marjakangas A., Alhainen M., Fox A.D., Heinicke T., Madsen J., Nilsson L., Rozenfeld S. 2015. International Single Species Action Plan for the Conservation of the Taiga Bean Goose Anser fabalis fabalis. Vol. 56. Bonn: AEWA Secretariat. 88 p. Møller A.P., Rubolini D., Lehikoinen E. 2008. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences of the United States of America 105(42): 16195–16200. DOI: 10.1073/pnas.0803825105 Piironen A., Paasivaara A., Laaksonen T. 2021. Birds of three worlds: moult migration to high Arctic expands a boreal-temperate flyway to a third biome. Movement Ecology 9(1): 47. DOI: 10.1186/s40462-021-00284-4 Panov I.N., Litvin K.E., Ebbinge B.S., Rosenfeld S.B. 2022. Reasons for the Reduction in the Population of the Western Subspecies of the Bean Goose (Anser fabalis fabalis and Anser fabalis rossicus): What Do the Ringing Data Say?. Biology Bulletin 49(7): 839–850. DOI: 10.1134/S1062359022070147 Pohlert T. 2018. Trend: non-parametric trend tests and change-point detection. R package version 1.1.5. Available from https://CRAN.R-project.org/package=trend R Core Team. 2021. R: A Language and Environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from https://www.R-project.org Romano A., Garamszegi L.Z., Rubolini D., Ambrosini R. 2022. Temporal shifts in avian phenology across the circannual cycle in a rapidly changing climate: a global meta-analysis. Ecological Monographs 93(1): е1552. DOI: 10.1002/ecm.1552 Rozenfeld S.B., Zamyatin D.O. 2021. Western Taiga Bean Goose. In: Red Data Book of the Russian Federation. 2nd ed. Moscow: VNII Ekologiya. P. 573–575. [In Russian] Rozenfeld S.B., Volkov S.V., Rogova N.V., Kirtaev G.V., Soloviev M.Yu. 2021. The impact of changes in breeding conditions in the Arctic on the expansion of the Russian population of the Barnacle Goose (Branta leucopsis). Biology Bulletin 48(9): 1528–1540. DOI: 10.1134/S1062359021090211 Ryzhanovskiy V.N., Gilev A.V. 2020. Hierarchy of Factors that Determine the Timing of the Arrival of Passeriformes in the Ob Forested Tundra. Biology Bulletin 47(8): 968–980. DOI: 10.1134/S1062359020080117 Sheehy J., Taylor C.M., Norris D.R. 2011. The importance of stopover habitat for developing effective conservation strategies for migratory animals. Journal of Ornithology 152 (Suppl.1): 161–168. DOI: 10.1007/s10336-011-0682-5 Syroechkovsky E.E. 2013. Adaptation of Anserini tribe to living in the Arctic. Moscow: KMK Scientific Press Ltd. 297 p. [In Russian] UNEP-WCMC & IUCN. 2024. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM). Cambridge, UK: UNEP-WCMC and IUCN. Available from www.protectedplanet.net Vangeluwe D., Rozenfeld S.B., Volkov S.V., Kazantzidis S., Morosov V.V., Zamyatin D.O., Kirtaev G.V. 2018. Migrations of Bewick's Swan (Cygnus bewickii): New Data on Tagging the Migration Routes, Stopovers, and Wintering Sites. Biology Bulletin 45(7): 706–717. DOI: 10.1134/S1062359018070178 Volkov S.V., Grinchenko O.S., Sviridova T.V. 2017. The effects of weather and climate changes on the timing of autumn migration of the Common Crane (Grus grus) in the North of Moscow Region. Biology Bulletin 43(9): 1203–1211. DOI: 10.1134/S1062359016110170 Wang Y., Purev-Ochir G., Gungaa A., Erdenechimeg B., Terbish O., Khurelbaatar D., Wang Z., Mi C., Guo Y. 2023. Migration patterns and conservation status of Asian Great Bustard (Otis tarda dybowskii) in northeast Asia. Journal of Ornithology 164(2): 341–352. DOI: 10.1007/s10336-022-02030-y Wei X., Zhang G., Ji Y., Yang G., Li Y., Shi D., Zheng H., Peng J. 2023. Conservation of Bewick's swans (Cygnus columbianus bewickii): Insights from the identification of critical stopover sites and migration corridors. Global Ecology and Conservation 47: e02687. DOI: 10.1016/j.gecco.2023.e02687 |