Article

Article name NUTRIENT CYCLING AND SOIL QUALITY IN THREATENED VEREDAS IN TWO PROTECTED AREAS OF THE BRAZILIAN CERRADO
Authors

Leliane R.D. Oliveira, MSc., Departamento de Biologia Geral, Programa de Pós Graduação em Botânica Aplicada, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0003-4708-1488; e-mail: duartelrs@gmail.com
Leidivan A. Frazão, PhD, Professor, Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0001-6848-9007; e-mail: leidivan.frazao@gmail.com
Sabrina C.O. Silva, MSc., PhD Student, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0009-0000-3212-265X; e-mail: sabrinacelieoliveiraesilva@gmail.com
Walter S. de Araújo, PhD, Professor, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0003-0157-6151; e-mail: walterbioaraujo@gmail.com
Yule R.F. Nunes, PhD, Professor, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0003-3328-7506; e-mail: yule.nunes@unimontes.br
Valquíria M. Fernandes, Grad., Departamento de Biologia Geral, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0002-7977-2905; e-mail: valquiriafernandes121@gmail.com
Maria D.M. Veloso, PhD, Professor, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros (Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0002-2692-0249; e-mail: dora.veloso@unimontes.br

Reference to article

Oliveira L.R.D., Frazão L.A., Silva S.C.O., Araújo W.S., Nunes Y.R.F., Fernandes V.M., Veloso M.D.M. 2024. Nutrient cycling and soil quality in threatened veredas in two Protected Areas of the Brazilian cerrado. Nature Conservation Research 9(3): 34–46. https://dx.doi.org/10.24189/ncr.2024.018

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2024.018
Abstract

Veredas are humid environments of significant importance for the Brazilian Cerrado. Understanding soil quality and ecological processes between the soil and vegetation in veredas can provide insights into ecosystem dynamics. This study was aimed to assess litter deposition and decomposition, as well as soil quality, including chemical, physical, and microbiological attributes, in two threatened veredas at various stages of conservation in Brazil. The research was conducted in Almescla (a preserved vereda) within the Environmental Protection Area of the River Pandeiros, and Peruaçu (a degraded vereda) located at the Veredas do Peruaçu State Park. Litter deposition was measured using collectors, and decomposition was assessed with litter bags. Soil granulometry, carbon and nutrient contents, and soil microbial biomass were also evaluated to a depth of 20 cm. The litter production was higher in Peruaçu, with the leaf fraction accounting for more than 70% of the total in both studied areas. The decomposition constant (kc) was higher in Almescla vereda. Nutrient concentrations followed a decreasing order of Ca > N > K > Mg > S > P in both areas. Peruaçu vereda exhibited higher levels of clay, available P, and Ca. Microbial carbon, total organic carbon, microbial quotient, and carbon stock were higher in Almescla, whereas the metabolic quotient was higher in Peruaçu. Our results suggest that the degradation of vereda ecosystems may lead to changes in nutrient cycling, with reduced litter deposition and decreased carbon storage.

Keywords

carbon stock, litter decomposition, litter production, nutrient return, soil fertility, soil microorganisms

Artice information

Received: 16.04.2024. Revised: 05.05.2024. Accepted: 29.06.2024.

The full text of the article
References

Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3): 439–449. DOI: 10.2307/3546886
Almeida E.J., Luizão F., Rodrigues D.J. 2015. Produção de serrapilheira em florestas intactas e exploradas seletivamente no sul da Amazônia em função da área basal da vegetação e da densidade de plantas. Acta Amazonica 45(2): 157–166. DOI: 10.1590/1809-4392201402543
Alvarenga A.C., Fernandes L.A., Alonso J., Santos L.D.T., Sampaio R.A., Frazão L.A. 2015. Producción, composición y aporte de nutrientes de hojarasca en sistemas agroforestales. Spanish Journal of Rural Development 6(3–4): 85–100.
Alvares C.A., Stape J.L., Sentelhas P.C., Moraes Gonçalves J.L., Sparovek G. 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22(6): 711–728. DOI: 10.1127/0941-2948/2013/0507
Anderson T.H. 1994. Physiological analysis of microbial communities in soil: applications and limitations. In: K. Ritz, J. Dighton, K.E. Giller (Eds.): Beyond the biomass: compositional and functional analysis of soil microbial communities. Chichester: John Wiley and Sons Ltd. P. 67–76.
Anderson T.H., Domsch K.H. 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry 25(3): 393–395. DOI: 10.1016/0038-0717(93)90140-7
Arato H.D., Martins S.V., Ferrari S.H.D.S. 2003. Produção e decomposição de serapilheira em um sistema agroflorestal implantado para recuperação de área degradada em Viçosa-MG. Revista Árvore 27(5): 715–721. DOI: 10.1590/S0100-67622003000500014
Araújo A.S.F., Magalhaes L.B., Santos V.M., Nunes L.A.P.L., Dias C.T.S. 2017. Biological properties of disturbed and undisturbed Cerrado sensu stricto from Northeast Brazil. Brazilian Journal of Biology 77(1): 16–21. DOI: 10.1590/1519-6984.06715
Araújo A.S.F., Monteiro R.T.R. 2007. Indicadores biológicos de qualidade do solo. Bioscience Journal 23(3): 66–75.
Araújo G.M., Barbosa A.A., Arantes A.A., Amaral A.F. 2002. Composição florística de veredas no Município de Uberlândia, MG. Brazilian Journal of Botany 25(4): 475–493. DOI: 10.1590/S0100-84042002012000012
Araújo W.S., Silva S.C.O., Alves A.B., Freitas É.V.D., Grandez‐Rios J.M. 2024. Specialized herbivores have differential distribution in veredas under different drying levels. Austral Ecology 49(2): e13473. DOI: 10.1111/aec.13473
Austin A.T., Vivanco L., González‐Arzac A., Pérez L.I. 2014. There's no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems. New Phytologist 204(2): 307–314. DOI: 10.1111/nph.12959
Ávila M.A., Souza S.R., Veloso M.D.M., Santos R.M., Fernandes L.A., Nunes Y.R.F. 2016. Structure of natural regeneration in relation to soil properties and disturbance in two swamp forests. Cerne 22(1): 1–10. DOI: 10.1590/01047760201622012086
Bahia T.O., Luz G.D., Veloso M.D.M., Nunes Y.R.F., Neves W.V., Braga L.L., Lima P.C.V. 2009. Veredas na APA do Rio Pandeiros: importância, impactos ambientais e perspectivas. MG Biota 2(3): 3–13.
Bates D., Mächler M., Bolker B., Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1): 1–48. DOI: 10.18637/jss.v067.i01
Batista C.U.N., Medri M.E., Bianchini E., Medri C., Pimenta J.A. 2008. Tolerância à inundação de Cecropia pachystachya Trec. (Cecropiaceae): aspectos ecofisiológicos e morfoanatômicos. Acta Botanica Brasilica 22(1): 91–98. DOI: 10.1590/S0102-33062008000100012
Becker J., Pabst H., Mnyonga J., Kuzyakov Y. 2015. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro. Biogeosciences 12(19): 5635–5646. DOI: 10.5194/bg-12-5635-2015
Brasil J.B., Andrade E.M., Aquino D.N., Pereira Júnior L.R. 2017. Sazonalidade na produção de serrapilheira em dois manejos no semiárido tropical. Journal of Environmental Analysis and Progress 2(3): 167–176. DOI: 10.24221/jeap.2.3.2017.1335.167-176
Brito B.G.S., Veloso M.D.M., Sarneel J.M., Falcão L.A.D., Ribeiro J.M., Frazão L.A., Fernandes G.W. 2020. Litter decomposition in wet and dry ecosystems of the Brazilian Cerrado. Soil Research 58(4): 371–378. DOI: 10.1071/SR18317
Carmo C.A.F.S., Araujo W.S., Bernardi A.C.D.C., Saldanha M.F.C. 2000. Métodos de análise de tecidos vegetais utilizados na Embrapa Solos. Rio de Janeiro: Embrapa Solos-Circular Técnica (INFOTECA-E). 41 p.
Carvalho P. 1991. As veredas e sua importância no domínio dos cerrados. Informe Agropecuário 15(168): 54–56.
Centeno L.N., Guevara M.D.F., Cecconello S.T., Sousa R.O., Timm L.C. 2017. Textura do solo: conceitos e aplicações em solos arenosos. Revista Brasileira de Engenharia e Sustentabilidade 4(1): 31–37. DOI: 10.15210/RBES.V4I1.11576
Chen L., Liu L., Mao C., Qin S., Wang J., Liu F., Blagodatsky S., Yang G., Zhang Q., Zhang D., Yu J., Yang Y. 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications 9(1): 3951. DOI: 10.1038/s41467-018-06232-y
Cianciaruso M.V., Pires J.S.R., Delitti W.B.C., Silva É.F.L.P. 2006. Produção de serapilheira e decomposição do material foliar em um cerradão na Estação Ecológica de Jataí, município de Luiz Antônio, SP, Brasil. Acta Botanica Brasilica 20(1): 49–59. DOI: 10.1590/S0102-33062006000100006
Clark D.A., Brown S., Kicklighter D.W., Chambers J.Q., Thomlinson J.R., Ni J., Holland E.A. 2001. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications 11(2): 371–384. DOI: 10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2
Costa W.A.J.M., Atapattu A.M.L.K. 2001. Decomposition and nutrient loss from prunings of different contour hedgerow species in tea plantations in the sloping highlands of Sri Lanka. Agroforestry Systems 51(3): 201–211. DOI: 10.1023/A:1010772209966
Edwards W., Liddell M.J., Franks P., Nichols C., Laurance S.G.W. 2018. Seasonal patterns in rainforest litterfall: Detecting endogenous and environmental influences from long-term sampling. Austral Ecology 43(2): 225–235. DOI: 10.1111/aec.12559
Erfani M., Salmanmahiny A., Danehkar A., Etemad V. 2017. Modeling of forest soil and litter health using disturbance and landscape heterogeneity indicators in northern Iran. Journal of Mountain Science 14(9): 1801–1813. DOI: 10.1007/s11629-016-4270-2
Ewing J.M., Vepraskas M.J., Broome S.W., White J.G. 2012. Changes in wetland soil morphological and chemical properties after 15, 20, and 30 years of agricultural production. Geoderma 179–180: 73–80. DOI: 10.1016/j.geoderma.2012.02.018
Fidalgo E.C.C., Benites V.D.M., Machado P.D.A., Madari B.E., Coelho M.R., Moura, I.B., Lima C.X. 2007. Estoque de carbono nos solos do Brasil. Rio de Janeiro: Embrapa Solos-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). 27 p.
Gomes D., Caldeira M.V.W., Momolli D.R., Delarmelina W.M., Dias H.M., Paula R.R., Bighi K.N. 2022. Accumulated litter, nutrient stock and decomposition in an Atlantic Forest fragment. Revista Ambiente & Água 17(2): e2787. DOI: 10.4136/ambi-agua.2787
Guimarães A., Lima Rodrigues A.S., Malafaia G. 2017. Adapting a rapid assessment protocol to environmentally assess palm swamp (Veredas) springs in the Cerrado biome, Brazil. Environmental Monitoring and Assessment 189(111): 592. DOI: 10.1007/s10661-017-6299-2
Guimarães A.J.M., Araújo G.M., Corrêa G.F. 2002. Estrutura fitossociológica em área natural e antropizada de uma vereda em Uberlândia, MG. Acta Botanica Brasilica 16(3): 317–329. DOI: 10.1590/S0102-33062002000300007
Hawkesford M., Horstc W., Kichey T., Lambers H., Schjoerring J., Møller I.S., White P. 2012. Functions of macronutrients. In: H. Marschner (Ed.): Marschner's Mineral Nutrition of Higher Plants. Cambridge: Elsevier Academic Press. P. 135–189.
Hergoualc'h K., Dezzeo N., Verchot L.V., Martius C., van Lent J., del Aguila-Pasquel J., López Gonzales M. 2020. Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Global Change Biology 26(12): 7198–7216. DOI: 10.1111/gcb.15354
Huang C., Bai J., Shao H., Gao H., Xiao R., Huang L., Liu P. 2012. Changes in soil properties before and after wetland degradation in the Yellow River Delta, China. CLEAN – Soil, Air, Water 40(10): 1125–1130. DOI: 10.1002/clen.201200030
Johnson D.W., Turner J. 2019. Nutrient cycling in forests: a historical look and newer developments. Forest Ecology and Management 444(1): 344–373. DOI: 10.1016/j.foreco.2019.04.052
Inkotte J., Martins R.C.C., Scardua F.P., Pereira R.S. 2019. Métodos de avaliação da ciclagem de nutrientes no bioma Cerrado: uma revisão sistemática. Ciência Florestal 29(2): 988–1003. DOI: 10.5902/1980509827982
Li S., Xu Z., Yu Z., Fu Y., Su X., Zou B., Wang S., Huang Z., Wan X. 2023. Litter decomposition and nutrient release are faster under secondary forests than under Chinese fir plantations with forest development. Scientific Reports 13(1): 16805. DOI: 10.1038/s41598-023-44042-5
Lopes M.C.A., Araújo V.F.P., Vasconcellos A. 2015. The effects of rainfall and vegetation on litterfall production in the semiarid region of northeastern Brazil. Brazilian Journal of Biology 75(3): 703–708. DOI: 10.1590/1519-6984.21613
Martins J.R., Fernandes L.A., Oliveira A.L.G., Sampaio R.A., Frazão L.A. 2018. Soil microbial attributes under agroforestry systems in the cerrado of Minas Gerais. Floresta e Ambiente 25(1): e20160476. DOI: 10.1590/2179-8087.047616
Moraes J.A.P.V., Prado C.H.B.A. 1998. Photosynthesis and water relations in cerrado vegetation. Oecologia Brasiliensis 4: 45–63.
Nunes Y.R.F., Souza C.S., Azevedo I.F.P., Oliveira O.S., Frazão L.A., Fonseca R.S., Santos R.M., Neves W.V. 2022. Vegetation structure and edaphic factors in veredas reflect different conservation status in these threatened areas. Forest Ecosystems 9: 100036. DOI: 10.1016/j.fecs.2022.100036
Onen O.I., Aboh A.A., Mfam A.N., Akor M.O., Nweke C.N., Osuagwu A.N. 2020. Microbial Diversity: Values and Roles in Ecosystems. Asian Journal of Biology 9(1): 10–22. DOI: 10.9734/ajob/2020/v9i130075
Parsons S.A., Valdez-Ramirez V., Congdon R.A., Williams S.E. 2014. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region. Biogeosciences Discussions 11(18): 7901–7929. DOI: 10.5194/bgd-11-7901-2014
Qiu S., McComb A.J., Bell R.W. 2002. Phosphorus-leaching from litterfall in wetland catchments of the Swan Coastal Plain, southwestern Australia. Hydrobiologia 472: 95–105. DOI: 10.1023/A:1016369101072
R Core Team. 2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from https://www.R-project.org
Raiesi F., Beheshti A. 2015. Microbiological indicators of soil quality and degradation following conversion of native forests to continuous croplands. Ecological Indicators 50: 173–185. DOI: 10.1016/j.ecolind.2014.11.008
Ramos M.V.V., Curi N., Motta P.E.F.D., Vitorino A.C.T., Ferreira M.M., Silva M.L.N. 2006. Veredas do Triângulo Mineiro: Solos, água e uso. Ciência e Agrotecnologia 30(2): 283–293. DOI: 10.1590/S1413-70542006000200014
Ribeiro J.F., Walter B.M.T. 2008. As principais fitofisionomias do bioma Cerrado. In: S.M. Sano, S.P. Almeida, J.P. Ribeiro (Eds.): Cerrado: ecologia e flora. Brasília: Embrapa Cerrados. P. 152–212.
Sales G.B., Lessa T.A.M., Freitas D.A., Veloso M.D.D.M., Silva M.L.D.S., Fernandes L.A., Frazão L.A. 2020. Litterfall dynamics and soil carbon and nitrogen stocks in the Brazilian palm swamp ecosystems. Forest Ecosystems 7(1): 39. DOI: 10.1186/s40663-020-00251-2
Sales G.B., Frazão L.A., Fernandes L.A., Oliveira J.C., Veloso M.D.M. 2023. Efeito da degradação sobre os atributos do solo em ecossistemas de veredas no cerrado de Minas Gerais. Pesquisa Florestal Brasileira 43: 1–11. DOI: 10.4336/2023.pfb.43e202102190
Santos H.G., Jacomine P.K.T., Anjos L.H.C., Oliveira V.A., Lumbreras J.F., Coelho M.R., Almeida J.A., Araujo Filho J.C., Oliveira J.B., Cunha T.J.F. 2018. Sistema brasileiro de classificação de solos. Brasília: Embrapa, Brasília. 356 p.
Schumacher M.V., Brun E.J., Hernandes J.I., König F.G. 2004. Produção de serapilheira em uma floresta de Araucaria angustifolia (Bertol.) Kuntze no município de Pinhal Grande-RS. Revista Árvore 28(1): 29–37. DOI: 10.1590/S0100-67622004000100005
Silva E.E., Azevedo P.H.S., De-Polli H. 2007a. Determinação do carbono da biomassa microbiana do solo (BMS-C). Seropédica: Embrapa Agrobiologia. 6 p.
Silva E.E., Azevedo P.H.S., De-Polli H. 2007b. Determinação da respiração basal (RBS) e quociente metabólico do solo (qCO2). Seropédica: Embrapa Agrobiologia. 4 p.
Silva W.B., Périco E., Dalzochio M.S., Santos M., Cajaiba R.L. 2018. Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. Forest Ecology and Management 429(1): 189–197. DOI: 10.1016/j.foreco.2018.07.020
Singh J.S., Gupta V.K. 2018. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of the Total Environment 634: 497–500. DOI: 10.1016/j.scitotenv.2018.03.373
Soares P.F.C., Zuchello F., Anjos L.H.C., Pereira M.G., Oliveira A.P.P. 2015. Soil attributes and c and n variation in histosols under different agricultural usages in the state of Rio de Janeiro, Brazil. Bioscience Journal 31(5): 1349–1362. DOI: 10.14393/BJ-v31n5a2015-26365
Souza S.R., Veloso M.D., Espírito-Santo M.M., Silva J.O., Sánchez-Azofeifa A., Souza e Brito B.G., Fernandes G.W. 2019. Litterfall dynamics along a successional gradient in a Brazilian tropical dry forest. Forest Ecosystems 6: 35. DOI: 10.1186/s40663-019-0194-y
Sparling G.P., West A.W. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biology and Biochemistry 20(3): 337–343. DOI: 10.1016/0038-0717(88)90014-4
Switzer J.M., Hope G.D., Grayston S.J., Prescott C.E. 2012. Changes in soil chemical and biological properties after thinning and prescribed fire for ecosystem restoration in a Rocky Mountain Douglas-fir forest. Forest Ecology and Management 275: 1–13. DOI: 10.1016/j.foreco.2012.02.025
Szefer P., Carmona C.P., Chmel K., Konečná M., Libra M., Molem K., Novotný V., Segar S.T., Švamberková E., Topliceanu T.S., Lepš, J. 2017. Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession. Oikos 126(8): 1101–1111. DOI: 10.1111/oik.03670
Teixeira P.C., Donagemma G.K., Fontana A., Teixeira W.G. 2017. Manual de métodos de análise de solo. Rio de Janeiro: Embrapa. 574 p.
Thomas R.J., Asakawa N.M. 1993. Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biology and Biochemistry 25(10): 1351–1361. DOI: 10.1016/0038-0717(93)90050-L
Valenti M.W., Cianciaruso M.V., Batalha M.A. 2008. Seasonality of litterfall and leaf decomposition in a cerrado site. Brazilian Journal of Biology 68(3): 459–465. DOI: 10.1590/S1519-69842008000300002
Valladares G.S., Gomes E.G., Mello J.C.C.B.S., Pereira M.G., Anjos L.H.C., Ebeling A.G., Benites V.M. 2008. Análise dos componentes principais e métodos multicritério ordinais no estudo de organossolos e solos afins. Revista Brasileira de Ciência do Solo 32(1): 285–296. DOI: 10.1590/S0100-06832008000100027
Veloso M.D.M., Fernandes L.A., Ávila M.A., Nunes Y.R.F., Frazão L.A. 2018. Soil Attributes in Anthropized Hygrophilous Forest in Northern Minas Gerais State, Brazil. Journal of Agricultural Science and Technology B 8: 311–319. DOI: 10.17265/2161-6264/2018.05.005
Vitousek P.M., Sanford R.L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17: 137–167.
Wantzen K.M., Couto E.G., Mund E.E., Amorim R.S.S., Siqueira A., Tielbörger K., Seifan M. 2012. Soil Carbon Stocks in Stream-Valley-Ecosystems in the Brazilian Cerrado Agroscape. Agriculture, Ecosystems and Environment 151: 70–79. DOI: 10.1016/j.agee.2012.01.030
White B.L.A., Nascimento D.L., Dantas T.V.P., Ribeiro A.S. 2013. Dynamics of the production and decomposition of litterfall in a brazilian northeastern tropical forest (Serra de Itabaiana National Park, Sergipe State). Acta Scientiarum. Biological Sciences 35(2): 195–201. DOI: 10.4025/actascibiolsci.v35i2.11920
Xiang Y., An S., Cheng M., Liu L., Xie Y. 2018. Changes of Soil Microbiological Properties during Grass Litter Decomposition in Loess Hilly Region, China. International Journal of Environmental Research and Public Health 15(9): 1797. DOI: 10.3390/ijerph15091797
Yeomans J.C., Bremner J.M. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis 19(13): 1467–1476. DOI: 10.1080/00103628809368027
Zelarayán M.L., Celentano D., Oliveira E.C., Triana S.P., Sodré D.N., Muchavisoy K.H.M., Rousseau G.X. 2015. Impacto da degradação sobre o estoque total de carbono de florestas ripárias na Amazônia Oriental, Brasil. Acta Amazonica 45(3): 271–282. DOI: 10.1590/1809-4392201500432
Zhang H., Yuan W., Dong W., Liu S. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity 20: 240–247. DOI: 10.1016/j.ecocom.2014.01.003
Zornoza R., Guerrero C., Mataix-Solera J., Scow K.M., Arcenegui V., Mataix-Beneyto J. 2009. Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Applied Soil Ecology 42(3): 315–323. DOI: 10.1016/j.apsoil.2009.05