Article

Article name DISTRIBUTION MODELLING OF THE CAUCASIAN ENDEMIC FRITILLARIA LATIFOLIA AGAINST THE BACKGROUND OF CLIMATE CHANGE
Authors

Rustam H. Pshegusov, PhD, Head of the Forest Ecosystem Monitoring Laboratory in the Tembotov Institute of Ecology of Mountain Territories of RAS (360051, Russia, Kabardino-Balkar Republic, Nalchik, I. Armand street, 37-a); iD ORCID: https://orcid.org/0000-0002-6204-2690; е-mail: p_rustem@inbox.ru
Victoria A. Chadaeva, Dr.Sc., Head of the Geobotanical Research Laboratory in the Tembotov Institute of Ecology of Mountain Territories of RAS (360051, Russia, Kabardino-Balkar Republic, Nalchik, I. Armand street, 37-a); iD ORCID: https://orcid.org/0000-0002-0788-1395; е-mail: v_chadayeva@mail.ru

Reference to article

Pshegusov R.H., Chadaeva V.A. 2024. Distribution modelling of the Caucasian endemic Fritillaria latifolia against the background of climate change. Nature Conservation Research 9(1): 45–57. https://dx.doi.org/10.24189/ncr.2024.005

Electronic Supplement 1. The study design of the ecological niche modelling of the Caucasian endemic, Fritillaria latifolia (Link)
Electronic Supplement 2. Testing for spatial clustering of presence points and sampling bias, variables used in the analysis and model performance, and predictive maps of climatogenic dynamics of Fritillaria latifolia range and the areas of the species refugia in the Caucasus (Link)
Electronic Supplement 3. R packages used in the study of the ecological niche modelling of the Caucasian endemic Fritillaria latifolia (Link)
Electronic Supplement 4. ODMAP protocol used in the paper of Pshegusov & Chadaeva (2024) (Link)

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2024.005
Abstract

Current climate change, habitat degradation, pastoralism, shoot and bulb harvesting pose serious threats to the rare Caucasian endemic Fritillaria latifolia throughout its range. Knowledge of the limiting factors, species range dynamics in relation to climate change and the role of Protected Areas in species distribution are necessary to develop an effective conservation system at present and in the future. This was aimed (1) to determine the most suitable set of abiotic predictors for modelling Fritillaria latifolia localisation, (2) to formalise environmental and anthropogenic factors in species distribution models, (3) to predict the possible changes in the species range in relation to climatic changes, (4) to identify refugia with a consistently high probability of the species occurrence despite climatic changes. We applied Maxent software for species habitat modelling to build current and climatic models of the Fritillaria latifolia distribution, considering the abiotic variables and anthropogenic predictors such as the distance to Protected Areas and grasslands. Distances to anthropogenic infrastructure were calculated with the Path Distance measure considering the horizontal straight-line distance, surface distance and vertical factor. We also formalised the area accessibility (movement factor) through the distance to optimal sites (plots with 0.8 threshold of habitat suitability), where the probability of species occurrence was higher than 0.5. The most important abiotic variables in the species distribution were the Emberger's pluviothermic quotient, with optimal values corresponding to humid and perhumid climates, and the terrain roughness index, with optimal values ranging from nearly level (81–116) to intermediately rugged (162–239) slopes. Distance to Protected Areas (0–1 km) was the third important predictor of the Fritillaria latifolia current distribution, while the distance to grasslands contributed less to the model. The distance of suitable areas from optimal habitats (area accessibility) was 15 km. The species current core ranges are localised in the Western and Central Caucasus, Western and Central Transcaucasia, and the northwestern ridges of the Lesser Caucasus within a network of Protected Areas covering most of the highlands. The optimistic socio-economic pathway SSP1-2.6 predicted a 1.6-fold decrease in the area of species optimal habitats from 2021 to 2100. The pessimistic SSP5-8.5 scenario predicted 122-fold habitat area reduction. According to SSP1-2.6 climatic models, by 2100 the refugia area would be 172.4 km2 in the highlands of the western and central parts of the Greater Caucasus, including the Caucasus State Nature Reserve and Teberda National Park. These areas should be prioritised for the conservation of Fritillaria latifolia populations.

Keywords

Biotic-Abiotic-Movement concept, Maxent, Protected Area, refugia, socio-economic pathways

Artice information

Received: 17.04.2023. Revised: 15.11.2023. Accepted: 14.12.2023.

The full text of the article
References

Aiello-Lammens M.E., Boria R.A., Radosavljevic A., Vilela B., Anderson R.P. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5): 541–545. DOI: 10.1111/ecog.01132
Amatulli G., Domisch S., Tuanmu M.N., Parmentier B., Ranipeta A., Malczyk J., Jetz W. 2018. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data 5: 180040. DOI: 10.1038/sdata.2018.40
Atayev Z.V., Bratkov V.V. 2014. Reaction of landscapes of the North Caucasus on the current climatic changes. South of Russia: Ecology, Development 9(1): 141–157. DOI: 10.18470/1992-1098-2014-1-141-157 [In Russian]
Banag C., Thrippleton T., Alejandro G.J., Reineking B., Liede-Schumann S. 2015. Bioclimatic niches of selected endemic Ixora species on the Philippines: predicting habitat suitability due to climate change. Plant Ecology 216(9): 1325–1340. DOI: 10.1007/s11258-015-0512-6
Batsatsashvili K., Kikvidze Z., Khutsishvili M., Maisaia I., Sikharulidze Sh., Tchelidze D., Zambrana N.Y.P., Bussmann R.W. 2017. Fritillaria collina Adams, Liliaceae. In: R.W. Bussmann (Ed.): Ethnobotany of the Caucasus. European Ethnobotany. Cham: Springer. P. 209–311.
Bowen A.K.M., Stevens M.H.H. 2020. Temperature, topography, soil characteristics, and NDVI drive habitat preferences of a shade-tolerant invasive grass. Ecology and Evolution 10(19): 10785–10797. DOI: 10.1002/ece3.6735
Buhl-Mortensen L., Burgos J.M., Steingrund P., Buhl-Mortensen P., Ólafsdóttir S.H., Ragnarsson S.Á. 2019. Vulnerable marine ecosystems (VMEs): Coral and sponge VMEs in Arctic and sub-Arctic waters – Distribution and threats. Copenhagen: Nordisk Ministerråd. 144 p. DOI: 10.6027/TN2019-519
Christmas M.J., Breed M.F., Lowe A.J. 2016. Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics 17(2): 305–320. DOI: 10.1007/s10592-015-0782-5
Clark P.J., Evans F.C. 1954. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology 35(4): 445–453. DOI: 10.2307/1931034
Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8(7): 1991–2007. DOI: 10.5194/gmd-8-1991-2015
Daget P., Ahdali L., David P. 1988. Mediterranean bioclimate and its variation in the Palaearctic region. In: Specht R.L. (Ed.): Mediterranean-type Ecosystems. Tasks for vegetation science. Vol. 19. Dordrecht: Springer. P. 139–148. DOI: 10.1007/978-94-009-3099-5_6
Danielson J.J., Gesch D.B. 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073. Reston, Virginia, USA: U.S. Geological Survey. 26 p.
Duarte A., Whitlock S.L., Peterson J.T. 2019. Species Distribution Modeling. In: Fath B. (Ed.): Encyclopedia of Ecology (Second Edition). Vol. 2. Amsterdam: Elsevier. P. 189–198. DOI: 10.1016/B978-0-12-409548-9.10572-X
Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.McC.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29(2): 129–151. DOI: 10.1111/j.2006.0906-7590.04596.x
Elith J., Kearney M., Phillips S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution 1(4): 330–342. DOI: 10.1111/j.2041-210X.2010.00036.x
Elith J., Phillips S.J., Hastie T., Dudík M., Chee Y.E., Yates C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57. DOI: 10.1111/j.1472-4642.2010.00725.x
ENVIREM. 2023. ENVIronmental Rasters for Ecological Modeling. Available from https://envirem.github.io/
Fick S.E., Hijmans R.J. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. DOI: 10.1002/joc.5086
GBIF.org. 2023. GBIF Occurrence Download. Available from https://doi.org/10.15468/dl.fmvp6e
Glover-Kapfer P.A. 2015. A training manual for habitat suitability and connectivity modeling using tigers (Panthera tigris) in Bhutan as example. Technical Report. Bhutan: WWF. 46 p. DOI: 10.13140/RG.2.2.34804.86409
GMTED2010. 2023. GMTED2010 U.S. Geological Survey (usgs.gov). Available from https://www.usgs.gov/coastal-changes-and-impacts/gmted2010
Guerrina M., Conti E., Minuto L., Casazza G. 2016. Knowing the past to forecast the future: a case study on a relictual, endemic species of the SW Alps, Berardia subacaulis. Regional Environmental Change 16(4): 1035–1045. DOI: 10.1007/s10113-015-0816-z
Ji L., Gallo K. 2006. An agreement coefficient for image comparison. Photogrammetric Engineering and Remote Sensing 72(7): 823−833. DOI: 10.14358/PERS.72.7.823
Kramer-Schadt S., Niedballa J., Pilgrim J.D., Schröder B., Lindenborn J., Reinfelder V., Stillfried M., Heckmann I., Scharf A.K., Augeri D.M., Cheyne S.M., Hearn A.J., Ross J., Macdonald D.W., Mathai J., Eaton J., Marshall A.J., Semiadi G., Rustam R., Bernard H., Alfred R., Samejima H., Duckworth J.W., Breitenmoser-Wuersten C., Belant J.L., Hofer H., Wilting A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19(11): 1366–1379. DOI: 10.1111/ddi.12096
Lange S., Büchner M. 2020. ISIMIP3b bias-adjusted atmospheric climate input data (1.1). ISIMIP Repository. DOI: 10.48364/ISIMIP.842396.1
Liu C., White M., Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40(4): 778–789. DOI: 10.1111/jbi.12058
Mazangi A., Ejtehadi H., Mirshamsi O., Ghassemzadeh F., Hosseinianyousefkhani S.S. 2016. Effects of climate change on the distribution of endemic Ferula xylorhachis Rech.f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models. Russian Journal of Ecology 47(4): 349–354. DOI: 10.1134/S1067413616040123
McCoy J., Johnston K., Kopp S., Borup B., Willison J., Payne B. 2001. Using ArcGIS spatial analyst. Redlands: ESRI Press. 232 p.
Merow C., Smith M.J., Silander J.A. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36(10): 1058–1069. DOI: 10.1111/j.1600-0587.2013.07872.x
NextGIS. 2023. Vector layers and ready-to-go GIS projects based on OSM in ESRI Shape, Geodatabase. Available from https://data.nextgis.com
Ortiz-Urbina E., Diaz-Balteiro L., Iglesias-Merchan C. 2020. Influence of Anthropogenic Noise for Predicting Cinereous Vulture Nest Distribution. Sustainability 12(2): 503. DOI: 10.3390/su12020503
Pearson R.G., Dawson T.P., Lin C. 2004. Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27(3): 285–298. DOI: 10.1111/j.0906-7590.2004.03740.x
Peel M.C., Finlayson B.L., Mcmahon T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11(5): 1633–1644. DOI: 10.5194/hess-11-1633-2007
Peterson A.T. 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics 3: 59–72. DOI: 10.17161/bi.v3i0.29
Peterson A.T., Soberón J. 2012. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Natureza e Conservação 10(2): 102–107. DOI: 10.4322/natcon.2012.019
Peterson A.T., Soberón J., Pearson R.G., Anderson R.P., Martínez-Meyer E., Nakamura M., Araújo M.B. 2011. Ecological Niches and Geographic Distributions (MPB-49). Princeton: Princeton University Press. 329 p. DOI: 10.1515/9781400840670
Petrosyan V., Osipov F., Bobrov V., Dergunova N., Omelchenko A., Varshavskiy A., Danielyan F., Arakelyan M. 2020. Species Distribution models and niche partitioning among unisexual Darevskia dahli and its parental bisexual (D. portschinskii, D. mixta) rock lizards in the Caucasus. Mathematics 8(8): 1329. DOI: 10.3390/math8081329
Phillips S.J., Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161–175. DOI: 10.1111/j.0906-7590.2008.5203.x
Phillips S.J., Anderson R.P., Dudík M., Schapire R.E., Blair M.E. 2017. Opening the black box: An open-source release of Maxent. Ecography 40(7): 887–893. DOI: 10.1111/ecog.03049
Pshegusov R.H., Chadaeva V.A., Taniya I.V., Abramova L.M., Mustafina A.N. 2019. Life strategies and the long-term climate-driven dynamics of the endemic Caucasian plant Fritillaria latifolia Willd. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki 161(4): 571–589. DOI: 10.26907/2542-064X.2019.4.571-589 [In Russian]
Pshegusov R., Tembotova F., Chadaeva V., Sablirova Y., Mollaeva M. Akhomgotov A. 2022. Ecological niche modeling of the main forest-forming species in the Caucasus. Forest Ecosystems 9: 100019. DOI: 10.1016/j.fecs.2022.100019
Qin A., Liu B., Guo Q., Bussmann R.W., Ma F., Jian Z., Xu G., Pei S. 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation 10: 139–146. DOI: 10.1016/j.gecco.2017.02.004
R Core Team. 2023. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.R-project.org
Red Data Book of the Republic of Kabardino-Balkaria. Nalchik: Pechatnyy dvor, 2018. 496 p. [In Russian]
Red Data Book of the Chechen Republic (second edition). Rostov-on-Don: Yuzhnyy Publisher House, 2020. 480 p. [In Russian]
Riemann R., Wilson B.T., Lister A., Parks S. 2010. An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data. Remote Sensing of Environment 114(10): 2337–2352. DOI: 10.1016/j.rse.2010.05.010
Riley S.J., DeGloria S.D., Elliot R. 1999. A Terrain Ruggedness Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5(1–4): 23–27.
Sellar A.A., Jones C.G., Mulcahy J.P., Tang Y., Yool A., Wiltshire A., O'Connor F.M., Stringer M., Hill R., Palmieri J., Woodward S., de Mora L., Kuhlbrodt T., Rumbold S.T., Kelley D.I., Ellis R., Johnson C.E., Walton J., Abraham N.L., Andrews M.B., Andrews T., Archibald A.T., Berthou S., Burke E., Blockley E., Carslaw K., Dalvi M., Edwards J., Folberth G.A., Gedney N. et al. 2019. UKESM1: Description and evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems 11(12): 4513–4558. DOI: 10.1029/2019MS001739
Sharma H.P., Dhakal S., Bhusal K.P., Dhakal H., Gautam R., Joshi A.B., Rana D.B., Ghimire M., Ghimire S., Belant J.L. 2023. Factors influencing the potential distribution of globally endangered Egyptian Vulture nesting habitat in Nepal. Animals 13(4): 633. DOI: 10.3390/ani13040633
Sillero N., Arenas-Castro S., Enriquez-Urzelai U., Vale C.G., Sousa-Guedes D., Martínez-Freiría F., Real R., Barbosa A.M. 2021. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling 456: 109671. DOI: 10.1016/j.ecolmodel.2021.109671
Soberón J., Peterson A. 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics 2: 1–10. DOI: 10.17161/bi.v2i0.4
Soberón J., Osorio-Olvera L. 2023. A dynamic theory of the area of distribution. Journal of Biogeography 50(6): 1037–1048. DOI: 10.1111/jbi.14587
Syfert M.M., Smith M.J., Coomes D.A. 2013. The effects of sampling bias and model complexity on the predictive performance of maxent species distribution models. PLoS ONE 8(2): e55158. DOI: 10.1371/journal.pone.0055158
Tania I.V., Abramova L.M. 2013. Rare species of the highest plants of Ritsinsky Relic National Park (Abkhazia Republic). Proceedings of Samara Scientific Center of RAS 15(3): 1457–1461. [In Russian]
Thazaplizheva L.Kh., Chadaeva V.A. 2012. Survival strategies of some species of geophytes in the Area of the Kabardino-Balkar Republic. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki 154(4): 199–205. [In Russian]
Title P.O., Bemmels J.B. 2018. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41(2): 291–307. DOI: 10.1111/ecog.02880
Van Dyke F. 2008. Conservation Biology. Foundations, Concepts, Applications. Dordrecht: Springer. 478 p. DOI: 10.1007/978-1-4020-6891-1
Vignali S., Lörcher F., Hegglin D., Arlettaz R., Braunisch V. 2021. Modelling the habitat selection of the bearded vulture to predict areas of potential conflict with wind energy development in the Swiss Alps. Global Ecology and Conservation 25: e01405. DOI: 10.1016/j.gecco.2020.e01405
WorldClim2. 2023. WorldClim climate data base. Available from https://worldclim.com/version2
Yamalov S.M., Tania I.V., Khasanova G.R., Kuropatkin V.V. 2014. Ordination of grass communities with Fritillaria latifolia in the Ritsinsky Relic National Park (Abkhazia). Proceedings of the RAS Ufa Scientific Centre 3: 108–112. [In Russian]
Zernov A.S. 2006. Flora of the North-West Caucasus. Moscow: KMK Scientific Press Ltd. 664 p. [In Russian]
Zernov A.S., Onipchenko V.G. 2011. Vascular plants of the Republic of Karachay-Cherkessia (flora synopsis). Moscow: MAKS Press. 240 p. [In Russian]