Article

Article name RELATIONSHIPS BETWEEN THE SEASONAL DYNAMICS OF SOIL FUNGI BIOMASS AND ENVIRONMENTAL FACTORS IN PREDOMINATING FOREST TYPES IN THE BRYANSK WOODLANDS (EUROPEAN RUSSIA)
Authors

Anton D. Kataev, Researcher of the Centre for Forest Ecology and Productivity of the RAS (117997, Russia, Moscow, Profsoyuznaya Street, 84/32-14); iD ORCID: https://orcid.org/0009-0001-5245-3322; e-mail: talion08@bk.ru
Anastasia I. Kuznetsova, PhD, Junior Researcher of the Centre for Forest Ecology and Productivity of the RAS (117997, Russia, Moscow, Profsoyuznaya Street, 84/32-14); iD ORCID: https://orcid.org/0000-0002-5414-2587; e-mail: nasta472288813@yandex.ru
Vasiliy A. Kuznetsov, PhD, Associate Professor of Lomonosov Moscow State University (119991, Russia, Moscow, Leninskie gory, 1); Researcher of the Centre for Forest Ecology and Productivity of the RAS (117997, Russia, Moscow, Profsoyuznaya Street, 84/32-14); iD ORCID: https://orcid.org/0000-0001-9498-6285; e-mail: kuznetsovvvasiliy@gmail.com
Alexey V. Gornov, PhD, Deputy Director and Senior Researcher of the Centre for Forest Ecology and Productivity of the RAS (117997, Russia, Moscow, Profsoyuznaya Street, 84/32-14); iD ORCID: https://orcid.org/0000-0002-2940-7117; e-mail: aleksey-gornov@yandex.ru
Daria N. Tebenkova, PhD, Deputy Director and Senior Researcher of the Centre for Forest Ecology and Productivity of the RAS (117997, Russia, Moscow, Profsoyuznaya Street, 84/32-14); iD ORCID: https://orcid.org/0000-0001-9240-5395; e-mail: tebenkova.dn@gmail.com
Maria V. Gornova, PhD, Researcher of the Centre for Forest Ecology and Productivity of the RAS (117997, Russia, Moscow, Profsoyuznaya Street, 84/32-14); e-mail: mariya_harlampieva@mail.ru
Evgeniya Yu. Kaygordova, Senior Researcher of the Bryanskiy Les State Nature Biosphere Reserve (242180, Russia, Bryansk Region, Suzemsky district, Nerussa station, Zapovednaya Street, 2); e-mail: kaikai@bk.ru
Alena D. Nikitina, Junior Researcher of the Centre for Forest Ecology and Productivity of the RAS (117997, Russia, Moscow, Profsoyuznaya Street, 84/32-14); iD ORCID: https://orcid.org/0009-0007-9939-778X; e-mail: nikitina.al.dm@gmail.com

Reference to article

Kataev A.D., Kuznetsova A.I., Kuznetsov V.A., Gornov A.V., Tebenkova D.N., Gornova M.V., Kaygordova E.Yu., Nikitina A.D. 2023. Relationships between the seasonal dynamics of soil fungi biomass and environmental factors in predominating forest types in the Bryansk woodlands (European Russia). Nature Conservation Research 8(4): 112–125. https://dx.doi.org/10.24189/ncr.2023.035

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2023.035
Abstract

Being the crucial part of the forest soil's microbial pool, soil fungi in general and mycorrhizal fungi in particular are an important study object when it comes to forest ecosystems sustainability and preservation. Thus, the study of ectomycorrhizal fungi has been carried out in the Bryanskiy Les State Nature Biosphere Reserve, located in the south-eastern part of the Bryansk woodlands (European Russia). Forest types featured in the study are the local predominating types, namely green-moss-fructiculose pine forests and polydominant deciduous broadleaved nemoral-herbaceous forests with spruce. This study was aimed to assess seasonal dynamics of soil fungi' biomass overall and ectomycorrhizal fungi in particular over the course of the 2017 vegetation period (May – November) and its dependence on biotic and abiotic environmental factors, such as soil water content, temperature and vegetation. The vegetation period was divided into three periods of observation, namely an early (May – July), middle (July – September) and late (September – November) one. The method used to assess the fungal biomass was direct microscopic observation using the fluorescein diacetate staining. In order to estimate the ectomycorrhizal fungi biomass separately, trenching and in-growth mesh bags were employed. The obtained results suggest that the soil fungi biomass steadily increases over the vegetation period in both studied forest types. This is mostly affected by the forest type, available water amount and seasonal changes, while the temperature's impact is less pronounced. On average, the soil fungi biomass was higher in broadleaved forests than in pine forests (2.288 mg C × g-1 soil vs. 1.672 mg C × g-1 soil, respectively), with non-ectomycorrhizal component having comparable biomass. The dynamics of biomass differed in the two forest types. However, noticeable differences (p < 0.1) between the two forest types have only been recorded during the July – September period. The biomass of ectomycorrhizal fungi is smaller than the biomass of non-mycorrhizal fungi, but at the same time it is less affected by changes in moisture. Besides that, the study has shown that the forest litter characteristics can greatly affect the dynamics of the fungal biomass.

Keywords

Bryanskiy Les State Nature Biosphere Reserve, deciduous-coniferous forests, ectomycorrhizal fungi, soil water, temperature, vegetation

Artice information

Received: 25.05.2023. Revised: 05.10.2023. Accepted: 10.10.2023.

The full text of the article
References

Allen M.F. 2007. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal 6(2): 291–297. DOI: 10.2136/vzj2006.0068
Allen M.F., Kitajima K. 2014. Net primary production of ectomycorrhizas in a California forest. Fungal Ecology 10: 81–90. DOI: 10.1016/j.funeco.2014.01.007
Allison S.D., Treseder K.K. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology 14(12): 2898–2909. DOI: 10.1111/j.1365-2486.2008.01716.x
Anderson J.P.E., Domsch K.H. 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Canadian Journal of Microbiology 21(3): 314–322. DOI: 10.1139/m75-045
Bahr A., Ellström M., Akselsson C., Ekblad A., Mikusinska A., Wallander H. 2013. Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage. Soil Biology and Biochemistry 59: 38–48. DOI: 10.1016/j.soilbio.2013.01.004
Boddy L. 1993. Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycological Research 97(6): 641–655. DOI: 10.1016/S0953-7562(09)80141-X
Booth M.G. 2004. Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest. Ecology Letters 7(7): 538–546. DOI: 10.1111/j.1461-0248.2004.00605.x
Braun-Blanquet J. 1964. Pflanzensociologie. Vienna: Springer Vienna. 865 p.
Brundrett M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154(2): 275–304. DOI: 10.1046/j.1469-8137.2002.00397.x
Cairney J.W. 2012. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry 47: 198–208. DOI: 10.1016/j.soilbio.2011.12.029
Carteron A., Beigas M., Joly S., Turner B.L., Laliberté E. 2021. Temperate forests dominated by arbuscular or ectomycorrhizal fungi are characterized by strong shifts from saprotrophic to mycorrhizal fungi with increasing soil depth. Microbial Ecology 82(2): 377–390. DOI: 10.1007/s00248-020-01540-7
Clemmensen K.E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., Stenlid J., Finlay R.D., Wardle D.A., Lindahl B. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127): 1615–1618. DOI: 10.1126/science.1231923
Compant S., van der Heijden M.G.A., Sessitsch A. 2010. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiology Ecology 73(2): 197–214. DOI: 10.1111/j.1574-6941.2010.00900.x
Cornelissen J., Aerts R., Cerabolini B., Werger M., van der Heijden M. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129(4): 611–619. DOI: 10.1007/s004420100752
Craig M.E., Turner B.L., Liang C., Clay K., Johnson D.J., Phillips R.P. 2018. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Global Change Biology 24(8): 3317–3330. DOI: 10.1111/gcb.14132
Derome J., Nieminen T. 1998. Metal and macronutrient fluxes in heavy-metal polluted Scots pine ecosystems in SW Finland. Environmental Pollution 103(2–3): 219–228. DOI: 10.1016/S0269-7491(98)00118-3
Fisher F.M., Gosz J.R. 1986. Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest. Biology and Fertility of Soils 2(1): 35–42. DOI: 10.1007/BF00638959
Futai K., Taniguchi T., Kataoka R. 2008. Ectomycorrhizae and Their Importance in Forest Ecosystems. In: Z.A. Siddiqui, M.S. Akhtar, K. Futai (Eds.): Mycorrhizae: sustainable agriculture and forestry. Dordrecht: Springer. P. 241–285. DOI: 10.1007/978-1-4020-8770-7_11
Gonthier P., Giordano L., Zampieri E., Lione G., Vizzini A., Colpaert J.V., Balestrini R. 2019. An ectomycorrhizal symbiosis differently affects host susceptibility to two congeneric fungal pathogens. Fungal Ecology 39: 250–256. DOI: 10.1016/j.funeco.2018.12.008
Gornov A.V., Gornova M.V., Tikhonova E.V., Shevchenko N.E., Kuznetsova A.I., Ruchinskaya E.V., Tebenkova D.N. 2018. Population-based assessment of succession stage of mixed forests in european part of Russia. Russian Journal of Forest Science 4: 243–257. DOI: 10.1134/S0024114818040083 [In Russian]
Hawkes C.V., Kivlin S.N., Rocca J.D., Huguet V., Thomsen M.A., Suttle K.B. 2011. Fungal community responses to precipitation. Global Change Biology 17(4): 1637–1645. DOI: 10.1111/j.1365-2486.2010.02327.x
Heinemeyer A., Hartley I.P., Evans S.P., Carreira de La Fuente J.A., Ineson P. 2007. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology 13(8): 1786–1797. DOI: 10.1111/j.1365-2486.2007.01383.x
Hendricks J.J., Mitchell R.J., Kuehn K.A., Pecot S.D. 2016. Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest. New Phytologist 209(4): 1693–1704. DOI: 10.1111/nph.13729
IUSS Working Group WRB. 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports №106. Rome: FAO. 216 p.
Kaisermann A., Maron P.A., Beaumelle L., Lata J.C. 2015. Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Applied Soil Ecology 86: 158–164. DOI: 10.1016/j.apsoil.2014.10.009
Karliński L. 2021. Biomass of external mycelium of ectomycorrhizal fungi associated with poplars – The impact of tree genotype, tree age and soil environment. Applied Soil Ecology 160: 103847. DOI: 10.1016/j.apsoil.2020.103847
Kazakova A.I., Semikolennykh A.A., Gornov A.V., Gornova M.V., Lukina N.V. 2018. Influence of vegetation on the lability characteristics of sandur areas of the Bryansky Les Nature Reserve. Moscow University Soil Science Bulletin 73(3): 100–106. DOI: 10.3103/S0147687418030055
Keller A.B., Brzostek E.R., Craig M.E., Fisher J.B., Phillips R.P. 2021. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecology Letters 24(4): 626–635. DOI: 10.1111/ele.13651
Kernaghan G. 2005. Mycorrhizal diversity: cause and effect?. Pedobiologia 49(6): 511–520. DOI: 10.1016/j.pedobi.2005.05.007
Korneykova M.V., Vasenev V.I., Nikitin D.A., Dolgikh A.V., Soshina A.S., Myazin V.A., Nakhaev M.R. 2022. Soil microbial community of urban green infrastructures in a polar city. Urban Ecosystems 25(5): 1399–1415. DOI: 10.1007/s11252-022-01233-8
Korneykova M.V., Myazin V.A., Fokina N.V., Chaporgina A.A., Nikitin D.A., Dolgikh A.V. 2023. Structure of Microbial Communities and Biological Activity in Tundra Soils of the Euro-Arctic Region (Rybachy Peninsula, Russia). Microorganisms 11(5): 1352. DOI: 10.3390/microorganisms11051352
Kropp B.R., Langlois C.G. 1990. Ectomycorrhizae in reforestation. Canadian Journal of Forest Research 20(4): 438–451. DOI: 10.1139/x90-061
Kuznetsova A.I., Lukina N.V., Tikhonova E.V., Gornov A.V., Gornova M.V., Smirnov V.E., Geraskina A.P., Shevchenko N.E., Tebenkova D.N., Chumachenko S.I. 2019. Carbon stock in sandy and loamy soils of coniferous–broadleaved forests at different succession stages. Eurasian Soil Science 52(7): 756–768. DOI: 10.1134/S1064229319070081
Laganière J., Paré D., Bergeron Y., Chen H.Y.H. 2012. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biology and Biochemistry 53: 18–27. DOI: 10.1016/j.soilbio.2012.04.024
Lukina N.V. 2018. Carbon accumulation and the succession status of forests. Moscow: KMK Scientific Press Ltd. 232 p. [In Russian]
Nikitin D.A., Chernov T.V., Zhelezova A.D., Tkhakakhova A.K., Nikitina S.A., Semenov M.V., Xenofontova N.A., Kutovaya O.V. 2019. Seasonal dynamics of microbial biomass in soddy-podzolic soil. Eurasian Soil Science 52(11): 1414–1421. DOI: 10.1134/S1064229319110073
Nikitin D.A., Semenov M.V., Ksenofontova N.A., Tkhakakhova A.K., Rusakova I.V., Lukin S.M. 2023. Effect of Fresh Organic Matter of Straw on Microbiological Parameters of Soddy-Podzolic Soil. Eurasian Soil Science 56(5): 651–662. DOI: 10.1134/s1064229322601950
Nilsson L.O., Giesler R., Bååth E., Wallander H. 2005. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist 165(2): 613–622. DOI: 10.1111/j.1469-8137.2004.01223.x
Okada K., Okada S., Yasue K., Fukuda M., Yamada A. 2011. Six-year monitoring of pine ectomycorrhizal biomass under a temperate monsoon climate indicates significant annual fluctuations in relation to climatic factors. Ecological Research 26(2): 411–419. DOI: 10.1007/s11284-011-0800-0
Osono T., Hagiwara Y., Masuya H. 2011. Effects of temperature and litter type on fungal growth and decomposition of leaf litter. Mycoscience 52(5): 327–332. DOI: 10.1007/S10267-011-0112-9
Pagano M.C. 2014. Drought stress and mycorrhizal plant. In: M. Miransari (Eds.): Use of Microbes for the Alleviation of Soil Stresses. Vol. 1. New York: Springer. P. 97–110. DOI: 10.1007/978-1-4614-9466-9_5
Pietikäinen J., Pettersson M., Bååth E. 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology 52(1): 49–58. DOI: 10.1016/j.femsec.2004.10.002
Read D.J., Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance?. New Phytologist 157(3): 475–492. DOI: 10.1046/j.1469-8137.2003.00704.x
Sato Y., Kumagai T., Kume A., Otsuki K., Ogawa S. 2004. Experimental analysis of moisture dynamics of litter layers – the effects of rainfall conditions and leaf shapes. Hydrological Processes 18(16): 3007–3018. DOI: 10.1002/hyp.5746
Simard S., Austin M. 2010. The role of mycorrhizas in forest soil stability with climate change. In: S. Simard (Ed.): Climate change and variability. InTech (On-line). P. 275–302. DOI: 10.5772/9813
Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. London: Academic Press. 800 p.
Söderström B.E. 1977. Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biology and Biochemistry 9(1): 59–63. DOI: 10.1016/0038-0717(77)90061-X
Susyan E.A., Wirth S., Ananyeva N.D., Stolnikova E.V. 2011. Forest succession on abandoned arable soils in European Russia – Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity. European Journal of Soil Biology 47(3): 169–174. DOI: 10.1016/j.ejsobi.2011.04.002
Štursová M., Kohout P., Human Z.R., Baldrian P. 2020. Production of fungal mycelia in a temperate coniferous forest shows distinct seasonal patterns. Journal of Fungi 6(4): 190. DOI: 10.3390/jof6040190
Valdés R.C., Mendoza-Villarreal R., García F.G., González-Morales S., Sánchez-Peńa S. 2019. Improved parameters of Pinus greggii seedling growth and health after inoculation with ectomycorrhizal fungi. Southern Forests 81(1): 23–30. DOI: 10.2989/20702620.2018.1474415
Voříšková J., Brabcová V., Cajthaml T., Baldrian P. 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist 201(1): 269–278. DOI: 10.1111/nph.12481
Wallander H., Nilsson L.O., Hagerberg D., Bååth E. 2001. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist 151(3): 753–760. DOI: 10.1046/j.0028-646x.2001.00199.x
Wang C., Fu B., Zhang L., Xu Z. 2019. Soil moisture–plant interactions: an ecohydrological review. Journal of Soils and Sediments 19(1): 1–9. DOI: 10.1007/s11368-018-2167-0
Xu X.M. 1996. On estimating non-linear response of fungal development under fluctuating temperatures. Plant Pathology 45(2): 163–171. DOI: 10.1046/j.1365-3059.1996.d01-134.x
Zvyagintsev D.G. 1991. Methods of the soil microbiology and biochemistry. Moscow: Moscow State University. 304 p. [In Russian]