Article

Article name GENETIC STRUCTURE OF SOLIDAGO × NIEDEREDERI (ASTERACEAE) POPULATION IN THE «ALEKSIN BOR» NATURAL MONUMENT (EUROPEAN RUSSIA)
Authors

Sergey N. Lysenkov, PhD, Senior Researcher of the Biological faculty of Lomonosov Moscow State University (119234, Russia, Moscow, Leninskie gory, 1-12); iD ORCID: https://orcid.org/0000-0002-5791-7712; e-mail: s_lysenkov@mail.ru
Maria A. Galkina, PhD, Researcher of the N.V. Tsitsin Main Botanical Garden of RAS (127276, Russia, Moscow, Botanicheskaya Street, 4); iD ORCID: https://orcid.org/0000-0002-3707-1473; e-mail: mawa.galkina@gmail.com

Reference to article

Lysenkov S.N., Galkina M.A. 2023. Genetic structure of Solidago × niederederi (Asteraceae) population in the «Aleksin Bor» Natural Monument (European Russia). Nature Conservation Research 8(4): 1–8. https://dx.doi.org/10.24189/ncr.2023.027

Electronic Supplement. Examples of genetic analysis results of the studied specimens of Solidago spp. (Link)

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2023.027
Abstract

Solidago × niederederi (Asteraceae) is a natural hybrid of the native S. virgaurea and the alien invasive S. canadensis, originated in Europe. Its naturalisation potential is still questionable. One of the largest (more than 20 ramet clusters, treated as individuals) known population of this nothospecies, is located in the «Aleksin Bor» Natural Monument (Aleksin town, Tula Region, Russia) in the floodplain of the River Oka. We studied its genetic structure with the help of chloroplast and nuclear markers. Analysis of sequence of nuclear ribosomal internal transcribed spacer ITS 1–2 showed that all individuals with intermediate morphology are actually hybrids. Data on the intergenic chloroplast non-coding spacer rpl32–trnL showed that S. canadensis is the maternal species in 60% of the studied individuals. It was shown that even closely located individuals were not clones; therefore, they were results of sexual, rather than vegetative reproduction. Analysis of ISSR markers showed that the studied individuals of S. × niederederi in this population are not only F1 hybrids, but also their descendants (F2 hybrids and/or backcrosses, mostly with S. canadensis). We conclude that S. × niederederi has successfully been naturalised in the studied community and, possibly, is outcompeting its native parental species, S. virgaurea, through introgression.

Keywords

alien species, biological invasions, hybridisation, nothospecies, ISSR, ITS 1–2, rpl32–trnL

Artice information

Received: 01.06.2023. Revised: 27.07.2023. Accepted: 12.08.2023.

The full text of the article
References

Abbott R.J., James J.K., Milne R.I., Giles A.C.M. 2003. Plant introductions, hybridization and gene flow. Philosophical Transactions of the Royal Society B: Biological Sciences 358(1434): 1123–1132. DOI: 10.1098/rstb.2003.1289
Anderson E.C., Thompson E.A. 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160(3): 1217–1229. DOI: 10.1093/genetics/160.3.1217
Bleeker W., Schmitz U., Ristow M. 2007. Interspecific hybridisation between alien and native plant species in Germany and its consequences for native biodiversity. Biological Conservation 137(2): 248–253. DOI: 10.1016/j.biocon.2007.02.004
Buntjer J.B. 2000. Cross Checker: computer assisted scoring of genetic AFLP data. In: Plant, Animal Genome 8th Conference. S. Diego. P. 9–12.
Gudžinskas Z., Žalneravičius E. 2016. Solidago ×snarskisii nothosp. nov. (Asteraceae) from Lithuania and its position in the infrageneric classification of the genus. Phytotaxa 253(2): 147–155. DOI: 10.11646/phytotaxa.253.2.4
Hall T.A. 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9.
Jaźwa M., Jędrzejczak E., Klichowska E., Pliszko A. 2018. Predicting the potential distribution area of Solidago ×niederederi (Asteraceae). Turkish Journal of Botany 42(1): 51–56. DOI: 10.3906/bot-1703-17
Khek E. 1905. Floristisches aus Ober-Oesterreich. Allgemeine botanische Zeitschrift für Systematik, Floristik, Pflanzengeographie 11(2): 21–23.
Kudo G. 2022. Outcrossing syndrome in alpine plants: implications for flowering phenology and pollination success. Ecological Research 37(3): 288–300. DOI: 10.1111/1440-1703.12314
Lysenkov S.N. 2022. Effect of Solidago canadensis invasion on the structure of interactions of native entomophilous plants and anthophilous insects. In: Modern Problems of Biological Evolution. Moscow: State Darwin Museum. P. 124–125. [In Russian]
Lysenkov S.N., Galkina M.A. 2022. First Finding of Solidago × niederederi Khek. (Asteraceae) in Tula Region (European Part of Russia). Russian Journal of Biological Invasions 13(1): 81–86. DOI: 10.1134/S2075111722010106
Lysenkov S.N., Galkina M.A. 2021. First found of Solidago × niederederi (Asteraceae) in Tula Oblast: What can Aleksin population of this species tell about its distribution and ecology?. In: Study and conservation of biodiversity of Tula Region and other regions of Russia. Tula: Tula State University. P. 89–95. [In Russian]
Migdałek G., Kolczyk J., Pliszko A., Kościńska-Pajak M., Słomka A. 2014. Reduced pollen viability and achene development in Solidago ×niederederi Khek from Poland. Acta Societatis Botanicorum Poloniae 83(3): 251–255. DOI: 10.5586/asbp.2014.025
NCBI. 2022. Nucleotide database. Available from www.ncbi.nlm.nih.gov/nuccore
Nilsson A. 1976. Spontana gullrishybrider (Solidago canadensis × virgaurea) i Sverige och Danmark. Svensk Botanisk Tidskrift 70: 7–16.
Pliszko A., Kostrakiewicz-Gierałt K. 2017. Resolving the naturalization strategy of Solidago × niederederi (Asteraceae) by the production of sexual ramets and seedlings. Plant Ecology 218(11–12): 1243–1253. DOI: 10.1007/s11258-017-0762-6
Pliszko A., Kostrakiewicz-Gierałt K. 2019. The importance of sexual, asexual and mixed ramet clusters in production of descendant ramets in populations of Solidago ×niederederi (Asteraceae). Biologia 74(8): 953–960. DOI: 10.2478/s11756-019-00233-y
Pliszko A., Kostrakiewicz-Gierałt K., Makuch-Pietraś I. 2023. The effect of site conditions and type of ramet clusters on sexual and asexual ramets of Solidago × niederederi (Asteraceae). NeoBiota 85: 125–143. DOI: 10.3897/neobiota.85.98796
Pliszko A., Zalewska-Gałosz J. 2016. Molecular evidence for hybridization between invasive Solidago canadensis and native S. virgaurea. Biological Invasions 18(11): 3103–3108. DOI: 10.1007/s10530-016-1213-3
Pyšek P., Richardson D.M., Rejmánek M., Webster G.L., Williamson M., Kirschner J. 2004. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53(1): 131–143. DOI: 10.2307/4135498
Repplinger M., Johannesen J., Seitz A., Comes H.P. 2007. Morphological and molecular evidence for hybridization and introgression in Central European Arctium (Asteraceae). Plant Systematics and Evolution 268(1–4): 75–95. DOI: 10.1007/s00606-007-0547-9
Skokanová K., Mereďa P., Šingliarová B., Španiel S. 2020a. Lectotype of Solidago ×niederederi (Asteraceae) selected from a recently rediscovered original material. Phytotaxa 438(1): 62–64. DOI: 10.11646/phytotaxa.438.1.8
Skokanová K., Šingliarová B., Španiel S., Hodálová I., Mereďa P. 2020b. Tracking the expanding distribution of Solidago ×niederederi (Asteraceae) in Europe and first records from three countries within the Carpathian region. BioInvasions Records 9(4): 670–684. DOI: 10.3391/bir.2020.9.4.02
Skokanová K., Šingliarová B., Španiel S., Mereďa P., Mártonfiová L., Zozomová-Lihová J. 2022. Relative DNA content differences reliably identify Solidago ×niederederi, a hybrid between native and invasive alien species. Preslia 94: 183–213. DOI: 10.23855/preslia.2022.183
Turland N.J., Wiersma J.H., Barrie F.R., Greuter W., Hawksworth D.L., Herendeen P.S., Knapp S., Kusber W.-H., Li D.-Z., Marhold K., May T.W., McNeill J., Monro A.M., Prado J., Price M.J., Smith G.F. (Eds.). 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. In: Regnum Vegetabile. Vol. 159. Glashütten: Koeltz Botanical Books. 254 p. DOI: 10.12705/Code.2018
Vinogradova Y.K., Galkina M.A. 2020. Hybridization as a factor of invasive activity of alien goldenrod species (Solidago). Biology Bulletin Reviews 10(1): 57–70. DOI: 10.1134/S2079086420010090
Werner P.A., Bradbury I.K., Gross R.S. 1980. The Biology of Canadian Weeds. 45. Solidago canadensis L. Canadian Journal of Plant Science 60(4): 1393–1409. DOI: 10.4141/cjps80-194
Wen J., Zimmer E.A. 1996. Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution 6(2): 167–177. DOI: 10.1006/mpev.1996.0069
Zalapa J.E., Brunet J., Guries R.P. 2009. Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra. American Journal of Botany 96(6): 1116–1128. DOI: 10.3732/ajb.0800334