Authors |
Vladimir A. Ananyev, PhD, Leading Researcher of the Forest Research Institute of the Karelian Research Center of RAS (185910, Russia, Republic of Karelia, Petrozavodsk, Pushkinskaya Street, 11); iD ORCID: https://orcid.org/0009-0002-8245-5836; e-mail: ananyev@krc.karelia.ru Alexey N. Pekkoev, PhD, Senior Researcher of the Forest Research Institute of the Karelian Research Center of RAS (185910, Russia, Republic of Karelia, Petrozavodsk, Pushkinskaya Street, 11); iD ORCID: https://orcid.org/0000-0002-7881-1140; e-mail: pek-aleksei@list.ru Svetlana I. Grabovik, PhD, Researcher of the Institute of Biology of the Karelian Research Center of RAS (185910, Russia, Republic of Karelia, Petrozavodsk, Pushkinskaya Street, 11); iD ORCID: https://orcid.org/0009-0005-8453-2171; e-mail: grabovik@bio.krc.karelia.ru Sergey A. Moshnikov, PhD, Leading Researcher of the Forest Research Institute of the Karelian Research Center of RAS (185910, Russia, Republic of Karelia, Petrozavodsk, Pushkinskaya Street, 11); iD ORCID: https://orcid.org/0000-0002-3415-728X; e-mail: moshniks@krc.karelia.ru Maria V. Medvedeva, PhD, Forest Research Institute of the Karelian Research Center of RAS (185910, Russia, Republic of Karelia, Petrozavodsk, Pushkinskaya Street, 11); iD ORCID: https://orcid.org/0000-0002-2543-3123; e-mail: mariamed@mail.ru Anna V. Ruokolainen, PhD, Senior Researcher of the Forest Research Institute of the Karelian Research Center of RAS (185910, Russia, Republic of Karelia, Petrozavodsk, Pushkinskaya Street, 11); iD ORCID: https://orcid.org/0000-0002-8885-5155; е-mail: annaruo@krc.karelia.ru Varvara M. Kolesnikova, PhD, Associate Professor of the Soil Science Faculty in the Lomonosov Moscow State University (119992, Russia, Moscow, Leninskie Gory, 1-12); e-mail: kolesnikovavm@my.msu.ru Viktoria V. Grabeklis, Graduate Student of the Soil Science Faculty in the Lomonosov Moscow State University (119992, Russia, Moscow, Leninskie Gory, 1-12); iD ORCID: https://orcid.org/0009-0009-7698-8258; e-mail: grabeklisvv@gmail.com
|
References |
Ananyev V.A., Grabovik S.I. 2011. Patterns of plant cover formation in primary mid-taiga spruce forests after the total windthrow. Proceedings of Petrozavodsk State University 4(117): 58–63. [In Russian] Ananyev V.A., Raevsky B.V., Grabovik S.I. 2006. Primary spruce forests of Vodlozersky National Park: structure, dynamics and state. In: Vodlozero Readings: Natural Science and Humanitarian Fundamentals of Natural, Scientific, and Educational Activities on Protected Areas of the Russian North. Petrozavodsk: Karelian Research Centre of RAS. P. 88–93. [In Russian] Ananyev V.A., Grabovik S.I., Ruokolainen A.V. 2018. Biological Diversity of Vegetation in the Pristine Middle Taiga Spruce Forests of Vodlozersky National Park. In: Biological Diversity of Forest Ecosystems: State, Conservation and Use. Gomel: Forest Institute of the National Academy of Sciences of Belarus. P. 13–16. [In Russian] Ananyev V.A., Timofeeva V.V., Kryshen A.M., Pekkoev A.N., Kostina E.E., Ruokolainen A.V., Moshnikov S.A., Medvedeva M.V., Polevoy A.V., Humala A.E. 2022. Fire Severity Controls Successional Pathways in a Fire-Affected Spruce Forest in Eastern Fennoscandia. Forests 13(11): 1775. DOI: 10.3390/f13111775 Andersson L., Alekseeva N.M., Kuznetsova E.S. (Eds.) 2009. Survey of biologically valuable forests in North-West European Russia. Vol. 2: Identification Manual of Species to be Used During Survey at Stand Level. Saint-Peterbsburg: Pobeda. 258 p. [In Russian] Anuchin N.P. 1982. Forest Taxation. Moscow: Lesnaya promyshlennost. 552 p. [In Russian] Basevich V.F., Dmitriev E.A. 1979. Influence of windthrow on the soil cover. Pochvovedenie 9: 134–142. [In Russian] Berglund H., Kuuluvainen T. 2021. Representative boreal forest habitats in northern Europe, and a revised model for ecosystem management and biodiversity conservation. Ambio 50(5): 1003–1017. DOI: 10.1007/s13280-020-01444-3 Bobkova K.S., Galenko E.P., Zagirova S.V., Senkina S.N., Tuzhilkina V.V., Mashika A.V., Patov A.I., Nikonov V.V., Lukina N.V., Isaeva L.G. 2006. Primary Spruce Forests of the North: Biodiversity, Structure, Functions. Saint-Petersburg: Nauka. 337 p. [In Russian] Coote L., Dietzsch A.C., Wilson M.W., Graham C.T., Fuller L., Walsh A.T., Irwin S., Kelly D.L., Mitchell F.J.G., Kelly T.C., O'Halloran J. 2013. Testing indicators of biodiversity for plantation forests. Ecological Indicators 32: 107–115. DOI: 10.1016/j.ecolind.2013.03.020 Crișan V.E., Dincă L.C., Oneț A., Bragă C.I., Enescu R.A., Teușdea A.C., Oneț C. 2021. Impact of windthrows disturbance on chemical and biological properties of the forest soils from Romania. Environmental Engineering and Management Journal 20(7): 1163–1172. Dick R.P. 1997. Soil enzyme activities as integrative indicators of soil health. In: Biological Indicators of Soil Health. Wellingford: CAB International. P. 121–156. Dynesius M., Gibb H., Hjältén J. 2010. Surface Covering of Downed Logs: Drivers of a Neglected Process in Dead Wood Ecology. PLoS ONE 5(10): e13237. DOI: 10.1371/journal.pone.0013237 Dyrenkov S.A. 1984. Structure and dynamics of boreal spruce forests. Leningrad: Nauka. 176 p. [In Russian] Fedorenko S.I. 2000. Features natural decomposition of wood by a complex of xylophilic communities on windthrow in the southern and middle taiga of Middle Urals. In: The Consequences of Catastrophic Windthrows in Forest Ecosystems. Ekaterinburg. P. 86–93. [In Russian] Girard F., De Grandpré L., Ruel J.C. 2014. Partial windthrow as a driving process of forest dynamics in old-growth boreal forests. Canadian Journal of Forest Research 44(10): 1165–1176. DOI: 10.1139/cjfr-2013-0224 Gogolev А.I., Targulyan V.О. 1994. Transitional horizons of soils with argillaceous-differentiated profile as a result of pedogenic differentiation. Eurasian Soil Science 6: 5–14. [In Russian] Grabovik S.I., Ananyev V.A. 2008. Structure and formation of the plant cover in undisturbed and totally wind-thrown spruce forests. Transactions of the Karelian Research Centre of the Russian Academy of Sciences 12: 9–13. [In Russian] Hodgetts N.G., Söderström L., Blockeel T.L., Caspari S., Ignatov M.S., Konstantinova N.A., Lockhart N., Papp B., Schröck C., Sim-Sim M., Bell D., Bell N.E., Brom H.H., Bruggeman-Nannenga M.A., Brugués M., Enroth J., Flatberg K.I., Garilleti R., Hedenäs L., Holyoak D.T., Hugonnot V., Kariyawasam I., Köckinger H., Kučera J., Lara F., Porley R.D. 2020. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology 42(1): 1–116. DOI: 10.1080/03736687.2019.1694329 Isaev A.S., Sukhovolsky V.G., Buzykin A.I., Ovchinnikova T.M. 2008. Successional processes in forest communities: models of phase transitions. Coniferous of the Boreal Zone 25(1–2): 9–15. [In Russian] Jelonek T., Tomczak A., Pazdrowski W. 2014. Wybrane wskaźniki stabilności drzew w drzewostanach sosnowych narażonych na wiatr. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej 39B: 35–45. Johnson D.L., Keller E.A., Rockwell T.K. 1990. Dynamic pedogenesis: new views on some key soil concepts, and a model for interpreting Quaternary soils. Quaternary Research 33(3): 306–319. DOI: 10.1016/0033-5894(90)90058-S Jönsson M.T., Edman M., Jonsson B.G. 2008. Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. Journal of Ecology 96(5): 1065–1075. DOI: 10.1111/j.1365-2745.2008.01411.x Junninen K., Similä M., Kouki J., Kotiranta H. 2006. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography 29(1): 75–83. DOI: 10.1111/j.2005.0906-7590.04358.x Kryshen A.M. 2006. Plant communities in Karelian logged areas. Moscow: Nauka. 262 p. [In Russian] Kulmala L., Aaltonen H., Berninger F., Kieloaho A.J., Levula J., Bäck J., Hari P., Kolari P., Korhonen F.J., Kulmala M., Nikinmaa E., Pihlatie M., Vesala T., Pumpanen J. 2014. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agricultural and Forest Meteorology 188: 33–44. DOI: 10.1016/j.agrformet.2013.12.003 Kuznetsov O.L. (Ed.). 2020. Red Data Book of the Republic of Karelia. Belgorod: Konstant. 448 p. [In Russian] Lewis M.E. 1991. Windfall disturbance in a piedmont uplands forest. Southeastern Geographer 31(1): 1–14. DOI: 10.1353/sgo.1991.0004 Loyko S.V., Bobrovsky M.V., Novokreshchennykh T.А. 2013. Indications of windfall morphogenesis in soils in the blackish taiga (by the example of the interfluve between the Tom' and the Yaysk rivers). Tomsk State University Journal of Biology 4(24): 20–35. [In Russian] Martin M., Girona M.M., Morin H. 2020. Driving factors of conifer regeneration dynamics in eastern Canadian boreal old-growth forests. PLoS ONE 15(7): e0230221. DOI: 10.1371/journal.pone.0230221 McCarthy J. 2001. Gap dynamics of forest trees: a review with particular attention to boreal forests. Environmental Reviews 9(1): 1–59. DOI: 10.1139/a00-012 Mochalov S.A. 2022. Global climate change and forest ecology problems. Izvestia. Ural Federal University Journal 23: 48–53. [In Russian] Morozova R.M. 1991. Forest soils in Karelia. Leningrad: Nauka. 184 p. [In Russian] Müller J., Ulyshen M., Seibold S., Cadotte M., Chao A., Bässler C., Vogel S., Hagge J., Weiß I., Baldrian P., Tláskal V., Thorn S. 2020. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos 129(10): 1579–1588. DOI: 10.1111/oik.07335 Oberle B., Lee M.R., Myers J.A., Osazuwa-Peters O.L., Spasojevic M.J., Walton M.L., Young D.F., Zanne A.E. 2020. Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Global Change Biology 26(2): 864–875. DOI: 10.1111/gcb.14873 Økland B., Bakke A., Hågvar S., Kvamme T. 1996. What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiversity and Conservation 5(1): 75–100. DOI: 10.1007/BF00056293 Petukhov I.N., Nemchinova A.V. 2015. Windthrows in forests of Kostroma oblast and neighboring lands in 1984–2011. Contemporary Problems of Ecology 8(7): 901–908. DOI: 10.1134/S1995425515070094 Polevoi A.V., Shcherbakov A.N., Humala A.E., Naldeev D.F. 2006. An Outbreak of the bark beetle (Ips typographus L.) as one of the consequences of a massive windblow in the Vodlozersky National Park. In: Vodlozero Readings: Natural Science and Humanitarian Fundamentals of Natural, Scientific, and Educational Activities on Protected Areas of the Russian North. Petrozavodsk: Karelian Research Centre of RAS. P. 96–102. [In Russian] POWO. 2023. Plants of the World Online. Kew: Royal Botanic Gardens. Available from http://www.plantsoftheworldonline.org/ Predtechenskaya O.O., Ruokolainen A.V. 2014. Fungi of the National Park «Vodlozersky» (Republic of Karelia). In: Fungal communities of forest ecosystems. Vol. 4. Moscow; Petrozavodsk: Karelian Research Centre of RAS. P. 76–88. [In Russian] Pukinskaya M.Yu. 2014. On the Methods of Studying Natural Disturbances in Spruce Forests by Dendrohronograms. Botanicheskii Zhurnal 99(6): 690–701. [In Russian] Raevsky B.V., Tarasenko V.V., Ananyev V.A. 2010. Quantitative assessment of disturbance rate in the forests of Vodlozersky National Park. Proceedings of Petrozavodsk State University 2: 47–51. [In Russian] Rajala T., Tuomivirta T., Pennanen T., Mäkipää R. 2015. Habitat models of wood-inhabiting fungi along a decay gradient of Norway spruce logs. Fungal Ecology 18: 48–55. DOI: 10.1016/j.funeco.2015.08.007 Ruokolainen A.V., Kotkova V.M. 2018. New data on aphyllophoroid fungi (Basidiomycota) of the Vodlozersky National Park. Transactions of the Karelian Research Centre of the Russian Academy of Sciences 8: 126–131. DOI: 10.17076/bg745 [In Russian] Ruokolainen A., Shorohova E., Penttilä R., Kotkova V., Kushnevskaya H. 2018. A continuum of dead wood with various habitat elements maintains the diversity of wood-inhabiting fungi in an old-growth boreal forest. European Journal of Forest Research 137(5): 707–718. DOI: 10.1007/s10342-018-1135-y Šamonil P., Král K., Hort L. 2010. The role of tree uprooting in soil formation: a critical literature review. Geoderma 157(3–4): 65–79. DOI: 10.1016/j.geoderma.2010.03.018 Sanginés de Cárcer P., Mederski P.S., Magagnotti N., Spinelli R., Engler B., Seidl R., Eriksson A., Eggers J., Bont L.G., Schweier J. 2021. The Management Response to Wind Disturbances in European Forests. Current Forestry Reports 7(4): 167–180. DOI: 10.1007/s40725-021-00144-9 Shishov L.L., Tolstonogov V.G., Lebedeva I.I., Gerasimova M.I. 2004. Classification and diagnostics of Russian soils. Smolensk: Ojkumena. 342 p. [In Russian] Siitonen J., Penttilä R., Kotiranta H. 2001. Coarse woody debris, polyporous fungi and saproxylic insects in an old-growth spruce forest in Vodlozero National Park, Russian Karelia. Ecological Bulletins 49: 231–242. Skvortsova E.B., Ulanova N.G., Basevich V.F. 1983. Ecological role of windfalls. Moscow: Lesnaya promyshlennost. 192 p. [In Russian] Smirnova O.V., Bobrovsky M.V., Khanina L.G., Smirnov V.E. 2006. Succession status of old dark coniferous forests of European Russia. Advances of Current Biology 126(1): 26–48. [In Russian] Storozhenko V.G. 2021. Succession dynamics of native spruce forests of different ages in European Russia. Forest Science Issues 4(3): 113–133. DOI: 10.31509/2658-607x-202143-89 [In Russian] Storozhenko V.G., Bykov A.V., Bukhareva O.A., Petrov A.V. 2018. Forest sustainability. Theory and practice of biogeocenotic research. Moscow: KMK Scientific Press Ltd. 171 p. [In Russian] Sukachev V.N. (Ed.) 1966. Program and Methodology of Biogeocenological Research. Moscow: Nauka. 366 p. [In Russian] Swanson M.E., Franklin J.F., Beschta R.L., Crisafulli C.M., DellaSala D.A., Hutto R.L., Lindenmayer D.B., Swanson F.J. 2011. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Frontiers in Ecology and the Environment 9(2): 117–125. DOI: 10.1890/090157 Taeroe A., de Koning J.H., Löf M., Tolvanen A., Heiðarsson L., Raulund-Rasmussen K. 2019. Recovery of temperate and boreal forests after windthrow and the impacts of salvage logging. A quantitative review. Forest Ecology and Management. 446: 304–316. DOI: 10.1016/j.foreco.2019.03.048 Thorn S., Bässler C., Brandl R., Burton P.J., Cahall R., Campbell J.L., Castro J., Choi C.Y., Cobb T., Donato D.C., Durska E., Fontaine J.B., Gauthier S., Hebert C., Hothorn T., Hutto R.L., Lee E.J., Leverkus A.B., Lindenmayer D.B., Obrist M..K, Rost J., Seibold S., Seidl R., Thom D., Waldron K., Wermelinger B., Winter M.B., Zmihorski M., Müller J. 2018. Impacts of salvage logging on biodiversity: a meta-analysis. Journal of Applied Ecology 55(1): 279–289. DOI: 10.1111/1365-2664.12945 Tonkonogov V.D. 2010. Automorphic soil formation in tundra and taiga zones of the East European and West Siberian Plains. Moscow: Dokuchaev Soil Institute. 304 p. [In Russian] Ulanova N.G. 2000. The effects of windthrow on forests at different spatial scales: a review. Forest Ecology and Management 135(1–3): 155–167. DOI: 10.1016/S0378-1127(00)00307-8 Ulanova N.G. 2018. Main Trends of biodiversity dynamics after natural and anthropogenic «catastrophes» in spruce forests of the European Part of Russia. In: Ecology and geography of plants and plant communities. Ekaterinburg: Ural State University. P. 968–971. [In Russian] USS Working Group WRB. 2015. World reference base for soil resources 2014, Update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report №106. Rome: FAO. 192 p. Vanha-Majamaa I., Lilja S., Ryömä R., Kotiaho J.S., Laaka-Lindberg S., Lindberg H., Puttonen P., Tamminen P., Toivanen T., Kuuluvainen T. 2007. Rehabilitating boreal forest structure and species composition in Finland through logging, dead wood creation and fire: the EVO experiment. Forest Ecology and Management 250(1–2): 77–88. DOI: 10.1016/j.foreco.2007.03.012 Vasenev I.I., Prosvirina A.P. 1988. Influence of Windthrow Disturbances on the Soil Cover. In: Indigenous dark coniferous forests of the southern taiga: (Refuge «Kologrivsky Forest»). Moscow: Nauka. P. 129–147. [In Russian] Vasenev I.I., Targulyan V.O. 1995. Windthrow and taiga soil formation (regimes, processes, morphogenesis of soil successions). Moscow: Nauka. 247 p. [In Russian] Vorobyeva L.A. 1998. Chemical Analysis of Soils. Moscow: Moscow State University. 272 p. Wasak K., Klimek B., Drewnik M. 2020. Rapid effects of windfall on soil microbial activity and substrate utilization patterns in the forest belt in the Tatra Mountains. Journal of Soils and Sediments 20(2): 801–815. DOI: 10.1007/s11368-019-02439-8 Yang S., Limpens J., Sterck F.J., Sass-Klaassen U., Cornelissen J.H.C., Hefting M., van Logtestijn R.S.P., Goudzwaard L., Dam N., Dam M., Veerkamp M.T., van den Berg B., Brouwer E., Chang C., Poorter L. 2021. Dead wood diversity promotes fungal diversity. Oikos 130(12): 2202–2216. DOI: 10.1111/oik.08388 Zavalishin S.I., Patrushev V.Yu. Changes in morphology of the sod-podzolic soils belt election in Altaisky Krai as a result of windfall. Forestry Bulletin 18(1): 161–164. [In Russian] |