Galina S. Alekseeva, PhD, Researcher of the A.N. Severtsov Institute of Ecology and Evolution of the RAS (119071, Russia, Moscow, Leninsky Avenue, 33); iD ORCID:; e-mail:
Polina S. Klyuchnikova, Principal Engineer of the A.N. Severtsov Institute of Ecology and Evolution of the RAS (119071, Russia, Moscow, Leninsky Avenue, 33); e-mail:
Vadim E. Kirilyuk, PhD, Leading Researcher of the Daursky State Nature Biosphere Reserve (674480, Russia, Zabaikalsky Krai, Ononsky district, Nizhny Tsasuchey, Komsomolskaya Street, 76); Senior Researcher of the Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the RAS (672014, Russia, Zabaikalsky Krai, Chita, Nedorezova Street, 16a); iD ORCID:; e-mail:
Sergey V. Naidenko, Dr. Sc., Professor, Chief Researcher of the A.N. Severtsov Institute of Ecology and Evolution of the RAS (119071, Russia, Moscow, Leninsky Avenue, 33); iD ORCID:; e-mail:

Reference to article

Alekseeva G.S., Klyuchnikova P.S., Kirilyuk V.E., Naidenko S.V. 2022. Body mass of Procarpa gutturosa (Bovidae) calves: influence of climatic conditions and occurrence of pathogens in the group of the Daursky State Nature Reserve (Russia). Nature Conservation Research 7(4): 84–96.

Section Research articles

Procapra gutturosa (hereinafter – Mongolian gazelle) is one of the last large migratory mammal species in Asia, which population has declined considerably over the past century due to various anthropogenic factors. In Russia, the Mongolian gazelle inhabits the north of its natural range, which supposes suboptimal conditions for this species, and it is listed in the Red Data Book of the Russian Federation. The physiological status of its calves was studied in the Daursky State Nature Reserve in 2015–2021 by assessing their body mass and the presence of antibodies to several pathogens. It was found that the body mass of Mongolian gazelle calves averaged from 2.85 kg to 6.14 kg and varied depending on such factors as sex, age and year of data collection. It was also related to climatic conditions, especially during the last third of pregnancy. In addition, Mongolian gazelle individuals were identified, which are seropositive to foot-and-mouth disease and peste des petits ruminants, but not to pasteurellosis and brucellosis. The number of positive reactions to the pathogens varied from year to year. So, the highest number of seropositive individuals was detected in 2018, representing 63.3%. Being still connected with the main range, the Mongolian gazelle group in Russia (surroundings of the Daursky State Nature Reserve) is gradually increasing. The study of animals' physiological condition makes it possible to predict changes in the status of this ungulate group.


body mass, foot-and-mouth disease, Mongolian gazelle, peste des petits ruminants, sex differences, ungulates

Artice information

Received: 24.03.2022. Revised: 26.08.2022. Accepted: 28.08.2022.

The full text of the article

Adams L.G., Dale B.W. 1998. Reproductive performance of female Alaskan caribou. Journal of Wildlife Management 62(4): 1184–1195. DOI: 10.2307/3801982
Adiya Ya., Gunin P.D., Naranbaatar G., Tsogtjargal G. 2016. The present status and problems in the preservation of ungulate animal populations in the arid zones of Mongolia. Arid Ecosystems 6(3): 158–168. DOI: 10.1134/S207909611603001X
Alekseeva G.S., Erofeeva M.N., Naidenko S.V., Pavlova E.V. 2017. Evaluation of immune system activity of females and kittens in domestic cat (Felis catus L., 1758) during lactation // Vestnik IrGSCHA. Vol. 82. P. 20–26. [In Russian]
Aziz-ul-Rahman, Wensman J.J., Abubakar M., Shabbir M.Z., Rossiter P. 2018. Peste des petits ruminants in wild ungulates. Tropical Animal Health and Production 50(8): 1815–1819. DOI: 10.1007/s11250-018-1623-6
Barbero-Palacios L., Carreira J.A., Baraza E., Krumins J.A., Brolly M., Burnside N.G., Bartolomé J., Lavín S., Calleja J.A., Carvalho J., Torres R.T., Barrio I.C., Perea R., Serrano E. 2020. The role of wild ungulates in nutrient cycling in Mediterranean ecosystems: a pending issue. Galemys 32: 1–3. DOI: 10.7325/Galemys.2020.F1
Bazha S.N., Andreev A.V., Danzhalova E.V., Dorofeyuk N.I., Drobyshev Yu.I., Petukhov I.A., Saandar M., Dugarjav Ch., Adiya Ya., Khadbaatar S. 2020. Dynamics of terrestrial natural ecosystems in Mongolia for the period of 1989-2017. Ecosystems: Ecology and Dynamics 4(3): 232–267. DOI: 10.24411/2542-2006-2020-10070
Bayasgalan C., Chultemdorj T., Roth F., Zinsstag J., Hattendorf J., Badmaa B., Argamjav B., Schelling E. 2018. Risk factors of brucellosis seropositivity in Bactrian camels of Mongolia. BMC Veterinary Research 14(1): 342. DOI: 10.1186/s12917-018-1664-0
Berger J., Buuveibaatar B., Mishra C. 2013. Globalization of the cashmere market and the decline of large mammals in Central Asia. Conservation Biology 27(4): 679–689. DOI: 10.1111/cobi.12100
Bolortsetseg S., Enkhtuvshin S., Nyamsuren D., Weisman W., Fine A., Yang A., Joly D.O. 2012. Serosurveillance for foot-and-mouth disease in Mongolian gazelles (Procapra gutturosa) and livestock on the eastern steppe of Mongolia. Journal of Wildlife Diseases 48(1): 33–38. DOI: 10.7589/0090-3558-48.1.33
Buuveibaatar B., Young J.K., Berger J., Fine A.E., Lkhagvasuren B., Zahler P., Fuller T.K. 2013. Factors affecting survival and cause-specific mortality of saiga calves in Mongolia. Journal of Mammalogy 94(1): 127–136. DOI: 10.1644/11-MAMM-A-077.1
Buuveibaatar B., Mueller T., Strindberg S., Leimgruber P., Kaczensky P., Fuller T.K. 2016. Human activities negatively impact distribution of ungulates in the Mongolian Gobi. Biological Conservation 203: 168–175. DOI: 10.1016/j.biocon.2016.09.013
Couturier S., Côté S.D., Otto R.D., Weladji R.B., Huot J. 2009. Variation in calf body mass in migratory caribou: the role of habitat, climate, and movements. Journal of Mammalogy 90(2): 442–452. DOI: 10.1644/07-MAMM-A-279.1
Erdenebaatar J., Bayarsaikhan B., Yondondorj A., Watarai M., Shirahata T., Jargalsaikhan E., Kawamoto K., Makino S.I. 2004. Epidemiological and serological survey of brucellosis in Mongolia by ELISA using sarcosine extracts. Microbiology and Immunology 48(8): 571–577. DOI: 10.1111/j.1348-0421.2004.tb03553.x
Festa-Bianchet M., Douhard M., Gaillard J.M., Pelletier F. 2017. Successes and challenges of long-term field studies of marked ungulates. Journal of Mammalogy 98(3): 612–620. DOI: 10.1093/jmammal/gyw227
Fine A.E., Pruvot M., Benfield C.T.O., Caron A., Cattoli G., Chardonnet P., Dioli M., Dulu T., Gilbert M., Kock R., Lubroth J., Mariner J.C., Ostrowski S., Parida S., Fereidouni S., Shiilegdamba E., Sleeman J.M., Schulz C., Soula J.J., Van der Stede Y., Tekola B.G., Walzer C., Zuther S., Njeumi F. 2020. Eradication of peste des petits ruminants virus and the wildlife-livestock interface. Frontiers in Veterinary Science 7: 50. DOI: 10.3389/fvets.2020.00050
French S.S., Chester E.M., Demas G.E. 2013. Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring. Physiology and Behavior 119: 175–184. DOI: 10.1016/j.physbeh.2013.06.018
Froy H., Walling C.A., Pemberton J.M., Clutton-Brock T.H., Kruuk L.E.B. 2016. Relative costs of offspring sex and offspring survival in a polygynous mammal. Biology Letters 12(9): 20160417. DOI: 10.1098/rsbl.2016.0417
Garrott R.A., Eberhardt L.L., White P.J., Rotella J. 2003. Climate-induced variation in vital rates of an unharvested large-herbivore population. Canadian Journal of Zoology 81(1): 33–45. DOI: 10.1139/z02-218
Gortázar C., Barroso P., Nova R., Cáceres G. 2021. The role of wildlife in the epidemiology and control of foot‐and‐mouth‐disease and similar transboundary (FAST) animal diseases: a review. Transboundary and Emerging Diseases. DOI: 10.1111/tbed.14235
Hasselquist D., Nilsson J.Å. 2009. Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1513): 51–60. DOI: 10.1098/rstb.2008.0137
Herfindal I., Tveraa T., Stien A., Solberg E.J., Grøtan V. 2020. When does weather synchronize life-history traits? Spatiotemporal patterns in juvenile body mass of two ungulates. Journal of Animal Ecology 89(6): 1419–1432. DOI: 10.1111/1365-2656.13192
Imai S., Ito T.Y., Kinugasa T., Shinoda M., Tsunekawa A., Lhagvasuren B. 2017. Effects of spatiotemporal heterogeneity of forage availability on annual range size of Mongolian gazelles. Journal of Zoology 301(2): 133–140. DOI: 10.1111/jzo.12402
Irvine R.J. 2006. Parasites and the dynamics of wild mammal populations. Animal Science 82(6): 775–781. DOI: 10.1017/ASC2006106
IUCN SSC Antelope Specialist Group. 2016. Procapra gutturosa. In: The IUCN Red List of Threatened Species 2016: e.T18232A115142812. Available from
Jiang Z., Takatsuki S., Li J., Wang W., Gao Z., Ma J. 2002. Seasonal variations in foods and digestion of Mongolian gazelles in China. Journal of Wildlife Management 66(1): 40–47. DOI: 10.2307/3802869
Jolles A.E., Beechler B.R., Dolan B.P. 2015. Beyond mice and men: environmental change, immunity and infections in wild ungulates. Parasite Immunology 37(5): 255–266. DOI: 10.1111/pim.12153
Karimova T.Yu., Lushchekina A.A., Narantuya N., Neronov V.M., Safronova I.N., Uchrakhbayar T. 2012. Changes in state of Mongolian gazelle (Procarpa gutturosa Pallas 1777) population of Eastern Mongolia: long-term data analysis. Arid Ecosystems 2(3): 150–155. DOI: 10.1134/S2079096112030079
Kirilyuk V.E. 2021. Rapidly increasing migratory activity of Mongolian gazelle (Procapra gutturosa) and the sightings of goitered gazelle (Gazella subgutturosa) in Transbaikalia as an alarm. Russian Journal of Theriology 20(1): 25–30. DOI: 10.15298/rusjtheriol.20.1.04
Kirilyuk V.E., Lushchekina A.A. 2017. Current status of Procapra gutturosa (Bovidae) in Russia. Nature Conservation Research 2(Suppl.1): 81–99. DOI: 10.24189/ncr.2017.018 [In Russian]
Kirilyuk V.E., Obyazov V.A., Tkachuk T.E., Kirilyuk O.K. 2012. Influence of climate change on vegetation and wildlife in the Daurian eco-region. In: M.J.A. Werger, M.A. van Staalduinen (Eds.): Eurasian steppes. Ecological problems and livelihoods in a changing world. Plant and Vegetation 6. Dordrecht: Springer. P. 397–424.
Kirilyuk V.Е., Kirilyuk A.V., Minaev A.N. 2019. Wolf's home range and movements in Daurian steppe. Nature Conservation Research 4(4): 91–105. DOI: 10.24189/ncr.2019.068 [In Russian]
Limon G., Ulziibat G., Sandag B., Dorj S., Purevtseren D., Khishgee B., Basan G., Bandi T., Ruuragch S., Bruce M., Rushton J., Beard P.M., Lyons N.A. 2020. Socio‐economic impact of foot‐and‐mouth disease outbreaks and control measures: an analysis of Mongolian outbreaks in 2017. Transboundary and Emerging Diseases 67(5): 2034–2049. DOI: 10.1111/tbed.13547
Martin C., Pastoret P.P., Brochier B., Humblet M.F., Saegerman C. 2011. A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Veterinary Research 42(1): 70. DOI: 10.1186/1297-9716-42-70
Munkhtsetseg E., Kimura R., Wang J., Shinoda M. 2007. Pasture yield response to precipitation and high temperature in Mongolia. Journal of Arid Environments 70(1): 94–110. DOI: 10.1016/j.jaridenv.2006.11.013
Naidenko S.V., Pavlova E.V., Kirilyuk V.E. 2014. Detection of seasonal weight loss and a serologic survey of potential pathogens in wild Pallas' cats (Felis [Otocolobus] manul) of the Daurian steppe, Russia. Journal of Wildlife Diseases 50(2): 188–194. DOI: 10.7589/2013-03-068
Nikiforov V.V., Vadopalas T.V., Lozovoy D.A., Kiriltsov E.V., Semakina S.P. 2019. Foot and mouth disease epizootological surveillance in wild animal population in Zabaykalsky Krai (Russia) as example. Veterinary Science Today 2(29): 17–29. DOI: 10.29326/2304-196X-2019-2-29-17-23
Nyamsuren D., Joly D.O., Enkhtuvshin S., Odonkhuu D., Olson K.A., Draisma M., Karesh W.B. 2006. Exposure of Mongolian gazelles (Procapra gutturosa) to foot and mouth disease virus. Journal of Wildlife Diseases 42(1): 154–158. DOI: 10.7589/0090-3558-42.1.154
Obyazov V.A., Kirilyuk V.E., Kirilyuk A.V. 2021. Torey lakes as an indicator of moisture long-term changes in Southeastern Transbaikalia and Northeastern Mongolia. Hydrosphere. Hazard Processes and Phenomena 3(3): 204–232. DOI: 10.34753/HS.2021.3.3.204 [In Russian]
Odonkhuu D., Olson K.A., Schaller G.B., Ginsberg J.R., Fuller T.K. 2009. Activity, movements, and sociality of newborn Mongolian gazelle calves in the Eastern Steppe. Acta Theriologica 54(4): 357–362. DOI: 10.4098/
Odontsetseg N., Mweene A.S., Kida H. 2005. Viral and bacterial diseases in livestock in Mongolia. Japanese Journal of Veterinary Research 52(4): 151–162. DOI: 10.14943/jjvr.52.4.151
Ogureeva G.N., Miklyaeva I.M., Bocharnikov M.V., Dudov S.V., Tuvshintogtokh I., Jargalsaikhan L. 2011. The spatial organization and diversity of Eastern Mongolian steppes. Arid Ecosystems 1(1): 29–37. DOI: 10.1134/S2079096111010070
Olson K.A., Fuller T.K., Schaller G.B., Lhagvasuren B., Odonkhuu D. 2005. Reproduction, neonatal weights, and first-year survival of Mongolian gazelles (Procapra gutturosa). Journal of Zoology 265(3): 227–233. DOI: 10.1017/S0952836904006284
Olson K.A., Murray M.G., Fuller T.K. 2010. Vegetation composition and nutritional quality of forage for gazelles in Eastern Mongolia. Rangeland Ecology and Management 63(5): 593–598. DOI: 10.2111/REM-D-09-00122.1
Patterson J.E.H., Neuhaus P., Kutz S.J., Ruckstuhl K.E. 2013. Parasite removal improves reproductive success of female North American red squirrels (Tamiasciurus hudsonicus). PLoS ONE 8(2): e55779. DOI: 10.1371/journal.pone.0055779
Pioz M., Loison A., Gauthier D., Gibert P., Jullien J.M., Artois M., Gilot-Fromont E. 2008. Diseases and reproductive success in a wild mammal: example in the alpine chamois. Oecologia 155(4): 691–704. DOI: 10.1007/s00442-007-0942-5
Pruvot M., Fine A.E., Hollinger C., Strindberg S., Damdinjav B., Buuveibaatar B., Chimeddorj B., Bayandonoi G., Khishgee B., Sandag B., Narmandakh J., Jargalsaikhan T., Bataa B., McAloose D., Shatar M., Basan G., Mahapatra M., Selvaraj M., Parida S., Njeumi F., Kock R., Shiilegdamba E. 2020. Outbreak of peste des petits ruminants among critically endangered Mongolian saiga and other wild ungulates, Mongolia, 2016–2017. Emerging Infectious Diseases 26(1): 51–62. DOI: 10.3201/eid2601.181998
Rahman A.U., Dhama K., Ali Q., Raza M.A., Chaudhry U., Shabbir M.Z. 2020. Foot and mouth disease in a wide range of wild hosts: A potential constraint in disease control efforts worldwide particularly in disease-endemic settings. Acta Tropica 210: 105567. DOI: 10.1016/j.actatropica.2020.105567
Red Data Book of Zabaikalsky Krai. Animals. Novosibirsk: Novosibirsk Publishing House, 2012. 344 p. [In Russian]
Red Data Book of the Russian Federation. Animals. 2nd ed. Moscow: All-Russian Research Institute of Ecology, 2021. 1128 p. [In Russian]
Robinson S., Milner-Gulland E.J., Grachev Y., Salemgareyev A., Orynbayev M., Lushchekina A., Morgan E., Beauvais W., Singh N., Khomenko S., Cammack R., Kock R. 2019. Opportunistic bacteria and mass mortality in ungulates: lessons from an extreme event. Ecosphere 10(6): e02671. DOI: 10.1002/ecs2.2671
Shcherbinin S.V., Korennoy F.I., Akimova T.P., Karaulov A.K. 2021. Semi-quantitative risk assessment of peste des petits ruminants introduction with wild animals into Russian Federation. Veterinary Science Today 10(4): 277–284. DOI: 10.29326/2304-196X-2021-10-4-277-284
Sheremetev I.S., Petrunenko E.A., Kislov D.E., Rozenfeld S.B., Dmitriev I.A., Jargalsaikhan L., Enkh-Amgalan S. 2017. Food selectivity of large herbivores in Eastern Mongolia. Contemporary Problems of Ecology 10(1): 17–27. DOI: 10.1134/S1995425517010097
Sparks A.M., Hayward A.D., Watt K., Pilkington J.G., Pemberton J.M., Johnston S.E., McNeilly T.N., Nussey D.H. 2020. Maternally derived anti-helminth antibodies predict offspring survival in a wild mammal. Proceedings of the Royal Society B: Biological Sciences 287(1939): 20201931. DOI: 10.1098/rspb.2020.1931
Tveraa T., Stien A., Bårdsen B.J., Fauchald P. 2013. Population densities, vegetation green-up, and plant productivity: impacts on reproductive success and juvenile body mass in reindeer. PLoS ONE 8(2): e56450. DOI: 10.1371/journal.pone.0056450
Vakhnina I.L., Noskova E.V. 2021. Changes in climatic conditions in southeastern Transbaikalia during the growing season according to meteorological and dendrochronological data. Hydrometeorological Research and Forecasting 3(381): 80–98. DOI: 10.37162/2618-9631-2021-3-80-98 [In Russian]
Vakhnina I.L., Noskova E.V., Golyatina M.A. 2020. Features of change in area of a water mirror and the number of lakes in the steppe zone of the Eastern Transbaikalia. Proceedings of Voronezh State University. Series: Geography. Geoecology 3: 13–23. DOI: 10.17308/geo.2020.3/3019 [In Russian]
Volodin I.A., Volodina E.V., Frey R., Kirilyuk V.E., Naidenko S.V. 2017. Unusually high-pitched neonate distress calls of the open-habitat Mongolian gazelle (Procapra gutturosa) and their anatomical and hormonal predictors. Die Naturwissenschaften 104(5–6): 50. DOI: 10.1007/s00114-017-1471-7
Weaver G.V., Domenech J., Thiermann A.R., Karesh W.B. 2013. Foot and mouth disease: a look from the wild side. Journal of Wildlife Diseases 49(4): 759–785. DOI: 10.7589/2012-11-276
Yoshihara Y., Ito T.Y., Lhagvasuren B., Takatsuki S. 2008. A comparison of food resources used by Mongolian gazelles and sympatric livestock in three areas in Mongolia. Journal of Arid Environments 72(1): 48–55. DOI: 10.1016/j.jaridenv.2007.05.001
Zolzaya B., Selenge T., Narangarav T., Gantsetseg D., Erdenechimeg D., Zinsstag J., Schelling E. 2014. Representative seroprevalences of human and livestock brucellosis in two Mongolian provinces. EcoHealth 11(3): 356–371. DOI: 10.1007/s10393-014-0962-7