Article

Article name IMPACT OF CHANGES IN AVERAGE TEMPERATURE AND LAND COVER ON COMPONENTS OF THE WATER BALANCE IN THE TEATINOS RIVER BASIN, PÁRAMO RABANAL, COLOMBIA
Authors

Yulia Ivanova, M.Sc. in Environmental management, Hydrology Engineer, Professor in the Universidad Militar Nueva Granada (Cra. 11 N 101–80, Bogotá D.C., Colombia), iD ORCID: https://orcid.org/0000-0001-8836-5175; email: Yulia.ivanova@unimilitar.edu.co

Reference to article

Ivanova Yu. 2022. Impact of changes in average temperature and land cover on components of the water balance in the Teatinos River basin, Páramo Rabanal, Colombia. Nature Conservation Research 7(4): 42–54. https://dx.doi.org/10.24189/ncr.2022.035

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2022.035
Abstract

In the national context, there are studies that confirm that the change in the average temperature in the Colombian páramos motivates the expansion of the agricultural frontier and expansive livestock farming and violates the ecosystem services of the hydrographic basins. Therefore, in the present study the effect of climate change on the change in land cover and various components of the water balance of the River Teatinos basin of the Rabanal páramo was evaluated, which is important from the point of view of biodiversity and water supply for the city of Tunja. This evaluation was carried out with the construction of the distributed water balance where the real evapotranspiration was identified depending on the vegetation cover that were characterised through remote sensing tools. The climatic analysis indicates that the increase in temperature explains 62% of the increase in evapotranspiration and the registered increase in rainfall explains 47.2% of the advance in forest cover. The advance of the forest cover (open and gallery forest) generates the contraction of the páramo grass cover. The 75%-reduction in the area of páramo coverage is explained by the expansion of the forest. It was obtained that the crop cover did not have a significant change. In relation to the impact on water availability, no significant change is observed because the increase in precipitation is offset by an increase in evapotranspiration, indicating possible mechanisms of resilience of the hydrographic basin to the phenomenon of global climate change.

Keywords

climate change, ecosystem service, moor, remote sensing, vegetation cover, water availability

Artice information

Received: 04.03.2022. Revised: 28.07.2022. Accepted: 04.08.2022.

The full text of the article
References

Ávila Á., Guerrero F.C., Escobar Y.C., Flávio J. 2019. Recent precipitation trends and floods in the Colombian Andes. Water 11(2): 379. DOI: 10.3390/w11020379
Buitrago-Betancourt J.D. 2020. Mining, international trade and environmental impacts in the páramo El Rabanal de Samacá, Boyacá. Intropica 15(1): 42–54. DOI: 10.21676/23897864.3426
CAR, Corpoboyacá, Corpochivor, IAvH. 2008. Study on the current state of the Rabanal páramo massif. Bogota D. C.: Instituto de investigación de Recursos Biológicos Alexander vonHumboldt, Corporacion Autónoma Regional de Boyacá, Corporación Autónomade Chivor, Corporacion Autonoma Regional de Cundinamarca. 500 p.
Caro C.A., Bladé E. 2021. Water resources management: Green Watershed Index (GWI). IOP Conference Series: Earth and Environmental Science 690: 012033. DOI:10.1088/1755-1315/690/1/012033
Carrera-Villacrés D.V., Guevara-García P.V., Tamayo-Bacacela L.C., Balarezo-Aguilar A.L., Narváez-Rivera C.A., Morocho-López D.R. 2016. Filling series annual meteorological data by statistical methods in the coastal zone from Ecuador and Andes, and calculation of rainfall. Idesia 34(3): 81–90. DOI: 10.4067/S0718-34292016000300010
Castro L.M., Carvajal-Escobar Y. 2010. Análisis de tendencia y homogeneidad de series climatológicas. Ingeniería de Recursos Naturales y del Ambiente 9: 15–25.
Clerici N., Cote-Navarro F. 2019. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of the Total Environment 685: 1181–1192. DOI: 10.1016/j.scitotenv.2019.06.275
Corpoboyacá. 2008. Environmental management plan for the Rabanal páramo. Tunja: Corpoboyacá. 500 p.
Cresso M., Clerici N., Sanchez A., Jaramillo F. 2020. Future climate change renders unsuitable conditions for paramo ecosystems in Colombia. Sustainability 12(20): 8373. DOI: 10.3390/su12208373
Diazgranados M., Tovar C., Etherington T.R., Rodríguez-Zorro P.A., Castellanos-Castro C., Rueda M.G., Flantua S. 2021. Ecosystem services show variable responses to future climate conditions in the Colombian páramos. PeerJ 9: e11370. DOI: 10.7717/peerj.11370
Espinoza J., Rivera D. 2012. Variations in water resources availability at the Ecuadorian páramo due to land-use changes. Environmental Earth Sciences 75: 1173. DOI: 10.1007/s12665-016-5962-1
Esse C., Santander-Massa R., Encina-Montoya F., De los Ríos P., Fonseca D., Saaveda P. 2019. Multicriteria spatial analysis applied to identifying ecosystem services in mixed-use river catchment areas in south central Chile. Forest Ecosystems 6(1): 25. DOI: 10.1186/s40663-019-0183-1
FAO. 1990. Evapotranspiracion del cultivo. Guias para la determinacion de los requerimientos de agua de los cultivos. Vol. 56. Rome: FAO. 300 p. Available from https://www.fao.org/3/x0490s/x0490s.pdf
Feola G., Suzunaga J., Soler J., Wilson A. 2020. Peri-urban agriculture as quiet sustainability: Challenging the urban development discourse in Sogamoso, Colombia. Journal of Rural Studies 80: 1–12. DOI: 10.1016/j.jrurstud.2020.04.032
García Herrán M. 2018 Protocolo de monitoreo hidrológico en páramos. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. 174 p.
Guajardo-Panes R.A., Granados-Ramírez G.R., Sánchez-Cohen I., Díaz-Padilla G., Barbosa-Moreno F. 2017. Spatial validation of climatological data and homogeneity tests: The case of Veracruz, Mexico. Water Technology and Sciences 8(5): 157–177. DOI: 10.24850/j-tyca-2017-05-11
Guerrero-Pedraza M.A., Herrera-Mejía M.E. 2016. Assessment of the current state of water quality and the perception of the community in the area of influence of two streams that are born at the 'Paramo Rabanal', in the Municipalities of Villapinzón (Cundinamarca) and Ventaquemada (Boyacá). Revista de Tecnología 14(2): 77–86. DOI: 10.18270/rt.v14i2.1871
Hao R., Huang G., Liu L., Li Y., Li J., Zhai M. 2022. Sustainable conjunctive water management model for alleviating water shortage. Journal of Environmental Management 304: 114243. DOI: 10.1016/j.jenvman.2021.114243
IAvH. 2015. Ecosystem services, provision and water regulation in the moors. Bogotá D.C.: IAvH. 100 p.
IAvH. 2017. Biodiversidad colombiana: números para tener en cuenta. Available from: http://www.humboldt.org.co/es/boletines-y-comunicados/item/1087-biodiversidad-colombiana-numero-tener-en-cuenta
IAvH, IGAC, MAVDT. 2007. Atlas of the paramo of Colombia. Bogotá D.C.: IAvH. 210 p.
IDEAM. 2010a. National Land Cover Legend. CORINE Land Cover Methodology adapted for Colombia. Scale: 1 : 100 000. Bogotá D.C.: IDEAM. 73 p.
IDEAM. 2010b. National Water Study. Bogotá D.C.: IDEAM. 421 p.
IDEAM. 2018. La variabilidad climáticay el cambio climáticoen Colombia. Bogotá, D.C.: IDEAM. 52 p.
Kiedrzyńska E., Belka K., Jarosiewicz P., Kiedrzyński M., Zalewski M. 2021. The enhancement of valley water retentiveness in climate change conditions. Science of the Total Environment 799: 149427. DOI: 10.1016/j.scitotenv.2021.149427
Llambi L.D., Becerra M.T., Peralvo M., Avella A., Baruffol M., Díaz L.J. 2020. Monitoring Biodiversity and Ecosystem Services in Colombia's High Andean Ecosystems: Toward an Integrated Strategy. Mountain Research and Development 39(3): 8–20. DOI: 10.1659/MRD-JOURNAL-D-19-00020.1
MADS. 2018. Decree 1007. Bogotá D.C.: MADS. 10 p.
Marchant Santiago C., Rodríguez Díaz P., Morales-Salinas L., Paz Betancourt L., Ortega Fernández L. 2021. Practices and Strategies for Adaptation to Climate Variability in Family Farming. An Analysis of Cases of Rural Communities in the Andes Mountains of Colombia and Chile. Agriculture 11(11): 1096. DOI: 10.3390/agriculture11111096
Margeta J. 2022. Water abstraction management under climate change: Jadro spring Croatia. Groundwater for Sustainable Development 16: 100717. DOI: 10.1016/j.gsd.2021.100717
Mendoza H. 2021. Regression methods. Bogotá D.C.: Universidad Nacional de Colombia. Available from http://red.unal.edu.co/cursos/ciencias/2007315/html/un5/cont_14_54.html
Morales-Acuña E., Linero-Cueto J.R., Canales F.A. 2021. Assessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region. Hydrology 8(3): 128. DOI: 10.3390/hydrology8030128
Mosquera G.M., Marín F., Stern M., Bonnesoeur V., Ochoa-Tocachi B., Román-Dañobeytia F., Crespo P. 2022. Progress in understanding the hydrology of high-elevation Andean grasslands under changing land use. Science of the Total Environment 804: 150112. DOI: 10.1016/j.scitotenv.2021.150112
Murillo-Sandoval P.J., Hilker T., Krawchuk M.A., Van Den Hoek J. 2018. Detecting and Attributing Drivers of Forest Disturbance in the Colombian Andes Using Landsat Time-Series. Forests 9(5): 269. DOI: 10.3390/f9050269
Padrón R., Wilcox B., Crespo P., Célleri R. 2015. Rainfall in the Andean Páramo: New Insights from High-Resolution Monitoring in Southern Ecuador. Journal of Hydrometeorology 16(3): 985–996. DOI: 10.1175/JHM-D-14-0135.1
Pamidimukkala A., Kermanshachi S., Adepu N., Safapour E. 2021. Resilience in Water Infrastructures: A Review of Challenges and Adoption Strategies. Sustainability 13(23): 12986. DOI: 10.3390/su132312986
QGIS Development Team. 2021. QGIS Geographic InformationSystem. Available from https://www.qgis.org
Robineau O., Châtelet M., Soulard C.T., Michel-Dounias I., Posner J. 2010. Integrating Farming and Páramo Conservation: A Case Study From Colombia. Mountain Research and Development 30(3): 212–221. DOI: 10.1659/MRD-JOURNAL-D-10-00048.1
Rodríguez-Morales M., Acevedo-Novoa D., Machado D., Ablan M., Dugarte W., Dávila F. 2019. Ecohydrology of the Venezuelan páramo: water balance of a high Andean watershed. In: Plant Ecology and Diversity 12(6): 573–591. DOI: 10.1080/17550874.2019.1673494
Ruíz D., Martinson D., Vergara W. 2012. Trends, stability and stress in the Colombian Central Andes. Climatic Change 112(3): 717–732. DOI: 10.1007/s10584-011-0228-0
Ruiz-Agudelo C.A., Hurtado Bustos S.L., Carrillo Cortés Y.P., Parrado Moreno C.A. 2019. What we know and do not know about tropical agroforestry systems and multiple ecosystem services provision. A review. Ecosistemas 28(3): 26–35. DOI: 10.7818/ECOS.1697
SIAC. 2021. Catálogo De Mapas SIAC. Available from: http://www.siac.gov.co/catalogo-de-mapas
Siqueira P.P., Oliveira P.T.S., Bressiani D., Neto A.A.M., Rodrigues D.B.B. 2021. Effects of climate and land cover changes on water availability in a Brazilian Cerrado Basin. Journal of Hydrology: Regional Studies 37: 100931. DOI: 10.1016/j.ejrh.2021.100931
Useche de Vega D.S., Márquez-Girón S.M. 2015. Socio-environmental diagnostic of the agricultural productionon the Rabanl paramo (Colombia) as a basisforits agroecological reset. Ciencia y Agricultura 12(1): 27–37. DOI: 10.19053/01228420.4111
Villamizar S.R., Pineda S.M., Carrillo G.A. 2019. The Effects of Land Use and Climate Change on the Water Yield of a Watershed in Colombia. Water 11(2): 285. DOI: 10.3390/w11020285
Vӧrӧsmarty C.J., Lévêque C., Revenga C. 2005. Fresh Waters. In: R. Hassan, R. Scholes, N. Ash (Eds.): Ecosystems and Human Well-being: Current State and Trends: Findings of the Condition and Trends Working Group. Chapter 7. Washington, D.C.: Island Press. P. 167–205. Available from https://www.millenniumassessment.org/documents/document.276.aspx.pdf