Article

Article name A DECREASE IN THE NUMBER AND THE TIMING SHIFT OF THE BIRD ARRIVAL IN THE NORTH-EASTERN BAIKAL REGION
Authors

Alexander A. Ananin, Dr.Sc., Leading Researcher of the United Administration of Barguzin State Nature Biosphere Reserve and Zabaikalsky National Park (671623, Russia, Republic of Buryatia, Barguzinsky District, settlement Ust-Barguzin, Lenina Street, 71); Senior Researcher of the Institute of General and Experimental Biology of the BSC SB of the RAS (670047, Russia, Ulan-Ude, Sakhyanova Street, 6); iD ORCID: https://orcid.org/0000-0002-9251-0563; e-mail: a_ananin@mail.ru

Reference to article

Ananin A.A. 2022. A decrease in the number and the timing shift of the bird arrival in the North-Eastern Baikal Region. Nature Conservation Research 7(2): 66–80. https://dx.doi.org/10.24189/ncr.2022.021

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2022.021
Abstract

The article deals with the main results of a long-term study of birds in the Barguzin State Nature Biosphere Reserve (Russia). Phenological observations of the bird spring arrival have been carried out from 1938 to 2020. Monitoring of bird communities has been carried out from 1984 to 2020 on permanent counting routes in the valleys of three rivers in the area from the Lake Baikal coast to the highlands of the Barguzin Range (460–1700 m a.s.l.). We detected shifts and cyclical changes in the timing of the bird arrival and revealed a steady decrease in the abundance of the bird population after 1997–1998. The long-term series of observations (taking into account of model bird groups) made it possible to identify some responses of the biota to climatic changes in the Lake Baikal Region. Twenty-six species (40.0%) began to arrive in spring statistically significantly earlier, seven species (10.8%) significantly later, and for 32 species (49.2%) the arrival timing did not change statistically significantly. In contrary to Europe and North America, in the Baikal Region, the proportion of distant migrants in the group of early arriving bird species is higher than in the group of nearby migrants. We suggest that these differences may be associated with different wintering areas of long-distance migrants (species of the Baikal Region winter in South and Southeast Asia in contrast to African wintering areas of European birds). In the Baikal Region, the periods of high and low abundance in background species populations are probably associated with the passage of wet and dry phases of a long climatic cycle. We have identified positive trends in long-term changes in abundance for seven background species (14.0%), and a steady decline in abundance for 17 species (34.0%). In addition, we noted an equal ratio of species with a positive and negative trend in native species abundance. Negative trends of changes in the number of distant and nearby migrants prevailed over positive (increase) trends. So, we found 14 species with negative and four species with positive trends. An increase in the duration of observations makes it possible to give a more reliable assessment of processes in population dynamics, and identify mechanisms of the influence of meteorological and phenological factors on the dynamics of the abundance of bird species. This makes it possible to predict some biota responses to long-term climate changes in the absence of anthropogenic transformations of the natural environment.

Keywords

abundance dynamics, Aves, Baikal, community, migration, phenology, population

Artice information

Received: 14.02.2022. Revised: 18.04.2022. Accepted: 19.04.2022.

The full text of the article
References

Ahola M., Laaksonen T., Sippola K., Eeva T., Rainio K., Lehikoinen E. 2004. Variation in climate warming along the migration route uncouples arrival and breeding dates. Global Change Biology 10(9): 1610–1617. DOI: 10.1111/j.1365-2486.2004.00823.x
Ananin A.A. 2002. The influence of climate changes on phenology of birds of Barguzin State Nature Reserve. In: Long-term dynamic of bird and mammal populations and global climatic changes. Kazan: Novoe znanie. P. 107–112. [In Russian]
Ananin A.A. 2010. Birds of Northern Pribaikalye: dynamics and features of formation of the population. Ulan-Ude: Buryat State University. 295 p. [In Russian]
Ananin A.A. 2015. The influence of climate change on the population of birds of mountain-taiga forests of the western macroslope of the Barguzin Range. In: Ecosystems of Central Asia in modern conditions of socio-economic development. Vol. 1. Ulaanbaatar, Mongolia. P. 280–283. [In Russian]
Ananin A.A. 2017. Results of bird counts on permanent routes (1984–2015) in the North-Eastern Pribaikalye. In: Dynamics of the number of birds in terrestrial landscapes. 30th anniversary of monitoring programs for wintering birds in Russia and neighboring regions. Moscow: KMK Scientific Press Ltd. P. 71–77. [In Russian]
Ananin A.A. 2019. Long-term changes of the winter population of birds in Northeast Baikal Region. Herald of Tver State University. Series: Biology and Ecology 1(53): 7–14. [In Russian]
Ananin A.A. 2020. Formation and Analysis of Long-Term Series of Bird-Population Observations at Key Sites as Way to Study Biodiversity. Contemporary Problems of Ecology 13(4): 382–390. DOI: 10.1134/S1995425520040034
Ananin A.A., Ananina T.L. 2019. Long-term monitoring of land communities of birds and insects in Barguzin Reserve – results and prospects. Steppe Science 15: 13–16. DOI: 10.24411/9999-006A-2019-11501 [In Russian]
Ananin A.A., Sokolov L.V. 2009. Long-term arrival trends of 54 avian species to Barguzinsky Nature Reserve in the northeastern Baikal area. Avian Ecology and Behaviour 15: 33–48.
Ananina T.L., Ananin A.A. 2017. Description of the climate of the Barguzin State Nature Reserve (Northern Prikayalye) for the period of 1955–2015 and its impact on insects. In: Nature of the Baikal Siberia: Proceedings of nature reserves and national parks of Baikal Siberia. Vol. 2. Ulan-Ude: Publishing House of the BSC SB RAS. P. 117–126. [In Russian]
Ananina T.L., Ananin A.A. 2019. Some results of temperature regime monitoring obtained with the help of automatic meteorological instruments (Barguzin Ridge). In: Natural complexes of the North-Eastern Baikal Regions: proceedings of the Barguzin State Nature Biosphere Reserve. Vol. 11. Ulan-Ude: Publishing House of the BSC SB RAS. P. 183–189. DOI: 10.31554/978-5-7925-0575-9-11-2019-183-189 [In Russian]
Ananina T.L., Ananin A.A. 2020. Long-term Climatic Changes in the Northeastern Baikal Region (Russia). Journal of Atmospheric Science Research 3(4): 10–15. DOI: 10.30564/jasr.v3i4.2255
Badmaev N.B., Ananin A.A., Bazarov A.V., Ananina T.L., Kurakov S.A., Gonchikov B.M.N. 2017. Interactive technologies for monitoring the climate of specially protected natural areas on the southern border of the cryolithozone (permafrost zone). In: Nature reserves are the guarantor of the future. Ulan-Ude: Publishing House of the BSC SB RAS. P. 26–30. [In Russian]
Bairlein F. 2016. Migratory birds under threat. Science 354(6312): 547–548. DOI: 10.1126/science.aah6647
Bart J. 2005. Monitoring the Abundance of Bird Populations. Auk 122(1): 15–25. DOI: 10.1093/auk/122.1.15
Bitterlin L.R., van Buskirk J. 2014. Ecological and life history correlates of changes in avian migration timing in response to climate change. Climate Research 61: 109–121. DOI: 10.3354/cr01238
Both C., Bouwhuis S., Lessells C.M., Visser M.E. 2006. Climate change and population declines in a long-distance migratory bird. Nature 441(7089): 81–83. DOI: 10.1038/nature04539
Both C., van Turnhout C.A.M., Bijlsma R.G., Siepel H., van Strien A.J., Foppen R.P.B. 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of the Royal Society B: Biological Sciences 277(1685): 1259–1266. DOI: 10.1098/rspb.2009.1525
Brommer J.E. 2008. Extent of recent polewards range margin shifts in Finnish birds depends on their body mass and feeding ecology. Ornis Fennica 85: 109–117.
Butler C.J. 2003. The disproportionate effect of global warming on the arrival dates of short-distance migratory birds in North America. Ibis 145(3): 484–495. DOI: 10.1046/j.1474-919X.2003.00193.x
Chen I.C., Hill J.K., Ohlemüller R., Roy D.B., Thomas C.D. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045): 1024–1026. DOI: 10.1126/science.1206432
Conroy M.J., Cooper R.J., Rush S.A., Stodola K.W., Nuse B.L., Woodrey M.S. 2010. Effective use of data from marshbird monitoring programs for conservation decision-making. Waterbirds 33(3): 397–404. DOI: 10.1675/063.033.0318
Cotton P.A. 2003. Avian migration phenology and global climate change. Proceedings of the National Academy of Sciences of the United States of America 100(21): 12219–12222. DOI: 10.1073/pnas.1930548100
Crick H.Q.P. 2004. The impact of climate change on birds. Ibis 146(s1): 48–56. DOI: 10.1111/j.1474-919X.2004.00327.x
Crowe O., Coombes R.H., Lysaght L., O'Brien C., Choudhury K.R., Walsh A.J., Wilson J.H., O'Halloran J. 2010. Population trends of widespread breeding birds in the Republic of Ireland 1998–2008. Bird Study 57(3): 267–280. DOI: 10.1080/00063651003615147
Donnelly A., Cooney T., Jennings E., Buscardo E., Jones M.B. 2009. Response of birds to climatic variability; evidence from the western fringe of Europe. International Journal of Biometeorology 53(3): 211–220. DOI: 10.1007/s00484-009-0206-7
Donnelly A., Geyer H., Yu R. 2015. Changes in the timing of departure and arrival of Irish migrant waterbirds. PeerJ 3: e726. DOI: 10.7717/peerj.726
Fang B., Yang Z., Shen M., Wu X., Hu J. 2021. Limited increase in asynchrony between the onset of spring green-up and the arrival of a long-distance migratory bird. Science of The Total Environment 795: 148823. DOI: 10.1016/j.scitotenv.2021.148823
Godet L., Jaffré M., Devictor V. 2011. Waders in winter: long-term changes of migratory bird assemblages facing climate change. Biology Letters 7(5): 714–717. DOI: 10.1098/rsbl.2011.0152
Gregory R.D., van Strien A., Voříšek P., Meyling A.W.G., Noble D.G., Foppen R.P.B., Gibbons D.W. 2005. Developing indicators for European birds. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1454): 269–288. DOI: 10.1098/rstb.2004.1602
Gregory R.D., Voříšek P., van Strien A., Gmelig-Meyling A.W., Jiguet F., Fornasari L., Reif J., Chylarecki P., Burfield I.J. 2007. Population trends of widespread woodland birds in Europe. Ibis 149(s2): 78–97. DOI: 10.1111/j.1474-919X.2007.00698.x
Haest B., Hüppop O., Bairlein F. 2020. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Proceedings of the National Academy of Sciences of the United States of America 117(29): 17056–17062. DOI: 10.1073/pnas.1920448117
Hüppop O., Hüppop K. 2003. North Atlantic Oscillation and timing of spring migration in birds. Proceedings of the Royal Society B: Biological Sciences 270(1512). P. 233–240. DOI: 10.1098/rspb.2002.2236
Hurlbert A.H., Liang Z. 2012. Spatiotemporal Variation in Avian Migration Phenology: Citizen Science Reveals Effects of Climate Change. PLoS ONE 7(2): e31662. DOI: 10.1371/journal.pone.0031662
Inger R., Gregory R., Duffy J.P., Stott I., Voříšek P., Gaston K.J. 2015. Common European birds are declining rapidly while less abundant species' numbers are rising. Ecology Letters 18(1): 28–36. DOI: 10.1111/ele.12387
Inouye D.W., Barr B., Armitage K.B., Inouye B.D. 2000. Climate change is affecting altitudinal migrants and hibernating species. Proceedings of the National Academy of Sciences of the United States of America 97(4): 1630–1633. DOI: 10.1073/pnas.97.4.1630
Jentsch A., Kreyling J., Boettcher-Treschkow J., Beierkuhnlein C. 2009. Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology 15(4): 837–849. DOI: 10.1111/j.1365-2486.2008.01690.x
Jiguet F., Devictor V., Julliard R., Couvet D. 2012. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecologica 44: 58–66. DOI: 10.1016/j.actao.2011.05.003
Jonzén N., Lindén A., Ergon T., Knudsen E., Vik J.O., Rubolini D., Piacentini D., Brinch C., Spina F., Karlsson L., Stervander M., Andersson A., Waldenström J., Lehikoinen A., Edvardsen E., Solvang R., Stenseth N.C. 2006. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312(5782): 1959–1961. DOI: 10.1126/science.1126119
Julliard R., Jiguet F., Couvet D. 2004. Evidence for the impact of global warming on the long-term population dynamics of common birds. Proceedings of the Royal Society B: Biological Sciences 271(Suppl.6): S490–S492. DOI: 10.1098/rsbl.2004.0229
Kamp J., Oppel S., Ananin A.A., Durnev Y.A., Gashev S.N., Hölzel N., Mishchenko A.L., Pessa J., Smirenski S.M., Strelnikov E.G., Timonen S., Wolanska K., Chan S. 2015. Global population collapse in a superabundant migratory bird and illegal trapping in China. Conservation Biology 29(6): 1684–1694. DOI: 10.1111/cobi.12537
Knudsen E., Lindén A., Both C., Jonzén N., Pulido F., Saino N., Sutherland W.J., Bach L.A., Coppack T., Ergon T., Gienapp P., Gill J.A., Gordo O., Hedenström A., Lehikoinen E., Marra P.P., Møller A.P., Nilsson A.L., Péron G., Ranta E., Rubolini D., Sparks T.H., Spina F., Studds C.E., Sæther S.A., Tryjanowski P., Stenseth N.C. 2011. Challenging claims in the study of migratory birds and climate change. Biological Reviews 86(4): 928–946. DOI: 10.1111/j.1469-185X.2011.00179.x
Koblik E.A., Arkhipov V.Yu. 2014. Fauna of the Birds of the Northern Eurasia's States (former USSR): Checklists. Moscow: KMK Scientific Press Ltd. 171 p. [In Russian]
Korosov A.V. 2007. Special biometrics methods: a training manual. Petrozavodsk: Petrozavodsk State University. 364 p. [In Russian]
Lehikoinen A., Green M., Husby M., Kålås J.A., Lindström Å. 2014. Common montane birds are declining in northern Europe. Journal of Avian Biology 45(1): 3–14. DOI: 10.1111/j.1600-048X.2013.00177.x
Lehikoinen A., Lindén A., Karlsson M., Andersson A., Crewe T.L., Dunn E.H., Gregory G., Karlsson L., Kristiansen V., Mackenzie S., Newman S., Røer J.E., Sharpe C., Sokolov L.V., Steinholtz Å., Stervander M., Tirri I.S., Tjørnløv R.S. 2019. Phenology of the avian spring migratory passage in Europe and North America: Asymmetric advancement in time and increase in duration. Ecological Indicators 101: 985–991. DOI: 10.1016/j.ecolind.2019.01.083
Lepetz V., Massot M., Schmeller D.S., Clobert J. 2009. Biodiversity monitoring: some proposals to adequately study species' responses to climate change. Biodiversity and Conservation 18(12): 3185–3203. DOI: 10.1007/s10531-009-9636-0
Maggini I., Cardinale M., Sundberg J.H., Spina F., Fusani L. 2020. Recent phenological shifts of migratory birds at a Mediterranean spring stopover site: Species wintering in the Sahel advance passage more than tropical winterers. PLoS ONE 15(9): e0239489. DOI: 10.1371/journal.pone.0239489
Maksimov A.A. 1984. Long-term fluctuations in the number of animals, their causes and prognosis. Novosibirsk: Nauka. 250 p. [In Russian]
Marra P.P., Francis C.M., Mulvihill R.S., Moore F.R. 2005. The influence of climate on the timing and rate of spring bird migration. Oecologia 142(2): 307–315. DOI: 10.1007/s00442-004-1725-x
Mason C.F. 2009. Long-term trends in the arrival dates of spring migrants. Bird Study 42(3): 182–189. DOI: 10.1080/00063659509477167
Miles W.T.S., Bolton M., Davis P., Dennis R., Broad R., Robertson I., Riddiford N.J., Harvey P.V., Riddington R., Shaw D.N., Parnaby D., Reid J.M. 2017. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds. Global Change Biology 23(4): 1400–1414. DOI: 10.1111/gcb.13486
Miller-Rushing A.J., Lloyd-Evans T.L., Primak R.B., Sarzinger P. 2008. Bird migration times, climate change, and changing population sizes. Global Change Biology 14(9): 1959–1972. DOI: 10.1111/j.1365-2486.2008.01619.x
Minin A.A., Ananin A.A., Buyvolov Yu.A., Larin E.G., Lebedev P.A., Polikarpova N.V., Prokosheva I.V., Rudenko M.I., Sapelnikova I.I., Fedotova V.G., Shuyskaya E.A., Yakovleva M.V., Yantser O.V. 2020. Recommendations to unify phenological observations in Russia. Nature Conservation Research 5(4): 89–110. DOI: 10.24189/ncr.2020.060 [In Russian]
Mitrus C., Sparks T.H., Tryjanowski P. 2005. First evidence of phenological change in a transcontinental migrant overwintering in the Indian sub-continent: the Red-breasted Flycatcher Ficedula parva. Ornis Fennica 82: 13–19.
Møller A.P., Rubolini D., Lehikoinen E. 2008. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences of the United States of America 105(42): 16195–16200. DOI: 10.1073/pnas.0803825105
Morrison C.A., Robinson R.A., Clark J.A., Gill J.A. 2010. Spatial and temporal variation in population trends in a long-distance migratory bird. Diversity and Distributions 16(4): 620–627. DOI: 10.1111/j.1472-4642.2010.00663.x
Newson S.E., Moran N.J., Musgrove A.J., Pearce-Higgins J.W., Gillings S., Atkinson P.W., Miller R., Grantham M.J., Baillie S.R. 2016. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158(3): 481–495. DOI: 10.1111/ibi.12367
Noskova E.V., Vakhnina I.L., Kurganovich K.A. 2019. Characteristic of humidity conditions of the territory of the flourless lakes of the Torey Plain with the use of meteorological data. Herald of Transbaikal State University 25(3): 22–30. [In Russian]
Ottvall R., Edenius L., Elmberg J., Engström H., Green M., Holmqvist N., Lindström Å., Pärt T., Tjernberg M. 2009. Population trends for Swedish breeding birds. Ornis Svecica 19(3): 117–192. DOI: 10.34080/os.v19.22652
Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37: 637–669. DOI: 10.1146/annurev.ecolsys.37.091305.110100
Pautasso M. 2012. Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian Journal of Zoology 79(2): 296–314. DOI: 10.1080/11250003.2011.627381
Pearce-Higgins J.W., Eglington S.M., Martay B., Chamberlain D.E. 2015. Drivers of climate change impacts on bird communities. Journal of Animal Ecology 84(4): 943–954. DOI: 10.1111/1365-2656.12364
Pulido F. 2007. Phenotypic changes in spring arrival: evolution, phenotypic plasticity, effects of weather and condition. Climate Research 35: 5–23. DOI: 10.3354/cr00711
Rainio K., Tøttrup A.P., Lehikoinen E., Coppack T. 2007. Effects of climate change on the degree of protandry in migratory songbirds. Climate Research 35: 107–114. DOI: 10.3354/cr00717
Ravkin Yu.S., Livanov S.G. 2008. Factor zoogeography: principles, methods and theoretical generalizations. Novosibirsk: Nauka. 205 p. [In Russian]
Reif J., Storch D., Voříšek P., Šťastný K., Bejček V. 2008. Bird-habitat associations predict population trends in central European forest and farmland birds. Biodiversity and Conservation 17(13): 3307–3319. DOI: 10.1007/s10531-008-9430-4
Remisiewicz M., Underhill L.G. 2020. Climatic variation in Africa and Europe has combined effects on timing of spring migration in a long-distance migrant Willow Warbler Phylloscopus trochilus. PeerJ 8: e8770. DOI: 10.7717/peerj.8770
Rubolini D., Møller A.P., Rainio K., Lehikoinen E. 2007. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Climate Research 35: 135–146. DOI: 10.3354/cr00720
Saino N., Rubolini D., Jonzén N., Ergon T., Montemaggiori A., Stenseth N.C., Spina F. 2007. Temperature and rainfall anomalies in Africa predict timing of spring migration in trans-Saharan migratory birds. Climate Research 35: 123–134. DOI: 10.3354/cr00719
Sanderson F., Donald P., Pain D., Burfield I., van Bommel F. 2006. Long-term population declines in Afro-Palearctic migrant birds. Biological Conservation 131(1): 93–105. DOI: 10.1016/j.biocon.2006.02.008
Schmeller D.S., Henle K., Loyau A., Besnard A., Henry P.Y. 2012. Bird-monitoring in Europe – a first overview of practices, motivations and aims. Nature Conservation 2: 41–57. DOI: 10.3897/natureconservation.2.3644
Schwartz E.A., Kokorin A.O. 2001. WWF Project on the Impact of Climate on Ecosystems. In: The Impact of Climate Change on Ecosystems. Moscow: Russkiy universitet. P. 1–4. [In Russian]
Socolar J.B., Epanchin P.N., Beissinger S.R., Tingley M.W. 2017. Phenological shifts conserve thermal niches. Proceedings of the National Academy of Sciences of the United States of America 114(49): 12976–12981. DOI: 10.1073/pnas.1705897114
Sokolov L.V. 2010. Climate in life of the plants and animals. Saint-Petersburg: Tessa. 344 p. [In Russian]
Sokolov L.V., Markovets M.Y., Shapoval A.P. 2017. Effect of climate on long-term dynamics of bird population in Baltic region. In: Dynamics of the number of birds in terrestrial landscapes. 30th anniversary of monitoring programs for wintering birds in Russia and neighboring regions. Moscow: KMK Scientific Press Ltd. P. 25–33. [In Russian]
Sokolov L.V., Markovets M.Y., Shapoval A.P., Morozov Y.G. 1998. Long-term trends in the timing of spring migration of passerines on the Courish Spit of the Baltic Sea. Avian Ecology and Behaviour 1: 1–21.
Sparks T.H., Bairlein F., Bojarinova J.G., Hüppop O., Lehikoinen E.A., Rainio K., Sokolov L.V., Walker D. 2005. Examining the total arrival distribution of migratory birds. Global Change Biology 11(1): 22–30. DOI: 10.1111/j.1365-2486.2004.00887.x
StatSoft. 2001. STATISTICA. Version 6.0 (Data analysis software system). Oklahoma: StatSoft. Available from http://www.statsoft.com
Stephens P.A., Mason L.R., Green R.E., Gregory R.D., Sauer J.R., Alison J., Aunins A., Brotons L., Butchart S.H.M., Campedelli T., Chodkiewicz T., Chylarecki P., Crowe O., Elts J., Escandell V., Foppen R.P.B., Heldbjerg H., Herrando S., Husby M., Jiguet F., Lehikoinen A., Lindström Å., Noble D.G., Paquet J.Y., Reif J., Sattler T., Szép T., Teufelbauer N., Trautmann S., van Strien A.J. et al. 2016. Consistent response of bird populations to climate change on two continents. Science 352(6281): 84–87. DOI: 10.1126/science.aac4858
Stirnemann R.L., O'Halloran J., Ridgway M., Donnelly A. 2012. Temperature-related increases in grass growth and greater competition for food drive earlier migrational departure of wintering Whooper Swans. Ibis 154(3): 542–553. DOI: 10.1111/j.1474-919X.2012.01230.x
Thorup K., Tøttrup A.P., Rahbek C. 2007. Patterns of phenological changes in migratory birds. Oecologia 151(4): 697–703. DOI: 10.1007/s00442-006-0608-8
Tøttrup A.P., Rainio K., Coppack T., Lehikoinen E., Rahbek C., Thorup K. 2010. Local Temperature Fine-Tunes the Timing of Spring Migration in Birds. Integrative and Comparative Biology 50(3): 293–304. DOI: 10.1093/icb/icq028
Tøttrup A.P., Thorup K., Rahbek C. 2006. Patterns of change in timing of spring migration in North European songbird populations. Journal of Avian Biology 37(1): 84–92. DOI: 10.1111/j.0908-8857.2006.03391.x
Tryjanowski P., Sparks T.H., Kuźniak S. 2002. Earlier arrival of some farmland migrants in western Poland. Ibis 144(1): 62–68. DOI: 10.1046/j.0019-1019.2001.00022.x
Usui T., Butchart S.H.M., Phillimore A.B. 2017. Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis. Journal of Animal Ecology 86(2): 250–261. DOI: 10.1111/1365-2656.12612
Vähätalo A.V., Rainio K., Lehikoinen A., Lehikoinen E. 2004. Spring arrival of birds depends on the North Atlantic Oscillation. Journal of Avian Biology 35(3): 210–216. DOI: 10.1111/j.0908-8857.2004.03199.x
Yamaura Y., Amano T., Koizumi T., Mitsuda Y., Taki H., Okabe K. 2009. Does land-use change affect biodiversity dymanics at a macroecological scale? A case study of birds over the past 20 years in Japan. Animal Conservation 12(2): 110–119. DOI: 10.1111/j.1469-1795.2008.00227.x