Article

Article name FLORISTIC MOSAICS OF THE THREATENED BRAZILIAN CAMPO RUPESTRE
Authors

Dario Caminha-Paiva, MSc, Researcher of Laboratório of Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (Av. Presidente Antônio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil); Department of Biological Sciences, Institute of Environment, Florida International University (Miami, FL 33199, USA); iD ORCID: https://orcid.org/0000-0002-7697-7702; e-mail: dariocaminhapaiva@gmail.com
Vanessa M. Gomes, PhD, Researcher of Laboratório of Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (Av. Presidente Antônio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0002-8530-0840; e-mail: vanessamatosgomes@gmail.com
Jessica Cunha-Blum, MSc Student of Departamento de Biologia Geral/Centro de Ciências Biológicas e da Saúde/ Programa de Pós-Graduação Biodiversidade e Uso dos Recursos Naturais - PPGBURN, Universidade Estadual de Montes Claros (Av. Prof. Rui Braga, S/N - Vila Mauriceia, 39401-089, Montes Claros, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0002-4775-3929; e-mail:jessicacunha92@hotmail.com
Michel J. P. Alves, MSc Student of Ecologia e Zoologia de Vertebrados, Instituto de Ciências Biológicas, Universidade Federal do Pará (Av. Perimetral, 5006/5007 – Guamá, 66075-750, Belém, Pará, Brazil); iD ORCID: https://orcid.org/0000-0002-4654-3911; e-mail: micheljacobypereiraalves@gmail.com
Dian C. P. Rosa, MSc Student, collaborator of Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (Av. Presidente Antônio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0001-8107-7154; e-mail: diancarlos19@gmail.com
Júlio C. Santiago, MSc Student of Laboratório of Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (Av. Presidente Antônio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0003-1776-3322; e-mail: julliosantiagoo@gmail.com
Daniel Negreiros, PhD, Senior Researcher of Laboratório of Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (Av. Presidente Antônio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0002-4780-2284; e-mail: negreiros.eco@gmail.com
G. Wilson Fernandes, PhD, Full Professor of Laboratório of Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (Av. Presidente Antônio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil); iD ORCID: https://orcid.org/0000-0003-1559-6049; e-mail: gw.fernandes@gmail.com

Reference to article

Caminha-Paiva D., Gomes V.M., Cunha-Blum J., Alves M.J.P., Rosa D.C.P., Santiago J.C., Negreiros D., Fernandes G.W. 2022. Floristic mosaics of the threatened Brazilian campo rupestre. Nature Conservation Research 7(1): 10–18. https://dx.doi.org/10.24189/ncr.2022.004

Electronic Supplement. Floristic mosaics of the threatened Brazilian campo rupestre (Link).

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2022.004
Abstract

The increase in rates of habitat loss requires an understanding of how biodiversity is distributed. Campo rupestre is an old, climatically buffered, and infertile landscape located in Brazil. Considered a biodiversity hotspot, the campo rupestre is mainly threatened by mining activity that requires a large operating area. Campo rupestre is known for its restricted distribution area and high abiotic heterogeneity, which modulates species coexistence and richness. To recognise the association between habitat type and plant communities, we propose to describe the floristic composition of herbaceous and shrub components in four habitats of the campo rupestre comprising quartzite and ferruginous substrate. We classified habitat types by the main surface soil features. In each habitat, we sampled ten 100-m2 plots to access information on the shrub and ten 1-m2 plots for the herbaceous component. Altogether we sampled 153 species, belonging to 38 families. The cluster analysis ordered by Sorensen metric indicates a clear distinction of species composition in the shrub component in the four habitats. However, the floristic composition of the herbaceous component was similar between the four habitats but showed a distinction when contrasting with the substrate type. Our results highlight the local taxonomic distinction between habitat types and substrates, indicating that the ecological distinction among substrate types of the campo rupestre cannot be overlooked in conservation and restoration actions.

Keywords

canga, herbaceous, plant community, phytosociology, quartzite, rupestrian grassland, shrub

Artice information

Received: 28.07.2021. Revised: 15.12.2021. Accepted: 16.12.2021.

The full text of the article
References

Caminha-Paiva D., Negreiros D., Barbosa M., Fernandes G.W. 2021. Functional trait coordination in the ancient and nutrient-impoverished campo rupestre: soil properties drive stem, leaf and architectural traits. Biological Journal of the Linnean Society 133(2): 531–545. DOI: 10.1093/biolinnean/blaa153
Cavassan O., Cesar O., Martins F.R. 1984. Fitossociologia da vegetação arbórea da Reserva Estadual de Bauru, Estado de São Paulo. Revista Brasileira de Botânica 7(2): 91–106.
Chao A., Chazdon R.L., Colwell R.K., Shen T.J. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62(2): 361–371. DOI: 10.1111/j.1541-0420.2005.00489.x
Conceição A.A., Pirani J.R. 2005. Delimitação de habitats em campos rupestres na Chapada Diamantina, Bahia: substratos, composição florística e aspectos estruturais. Boletim de Botânica da Universidade de São Paulo 23(1): 85–111. DOI: 10.11606/issn.2316-9052.v23i1p85-111
Corlett R.T., Tomlinson K.W. 2020. Climate change and edaphic specialists: irresistible force meets immovable object? Trends in Ecology and Evolution 35(4): 367–376. DOI: 10.1016/j.tree.2019.12.007
de Carvalho F., Godoy E.L., Lisboa F.J.G., Moreira F.M.S., de Souza F.A., Berbara R.L.L., Fernandes G.W. 2014. Relationship between physical and chemical soil attributes and plant species diversity in tropical mountain ecosystems from Brazil. Journal of Mountain Science 11(4): 875–883. DOI: 10.1007/s11629-013-2792-4
do Carmo F.F., Jacobi C.M. 2016. Diversity and plant trait-soil relationships among rock outcrops in the Brazilian Atlantic rainforest. Plant and Soil 403(1/2): 7–20. DOI: 10.1007/s11104-015-2735-7
do Carmo F.F., de Campos I.C., Jacobi C.M. 2016. Effects of fine-scale surface heterogeneity on rock outcrop plant community structure. Journal of Vegetation Science 27(1): 50–59. DOI: 10.1111/jvs.12342
Dray S., Dufour A.B. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22(4): 1–20. DOI: 10.18637/jss.v022.i04
Fernandes G.W. 2016. The megadiverse rupestrian grassland. In: G.W. Fernandes (Ed.): Ecology and Conservation of Mountaintop Grasslands in Brazil. Switzerland: Springer. P. 3–14.
Fernandes G.W., Toma T.S.P., Angrisano P., Overbeck G.E. 2016. Challenges in the Restoration of Quartzitic and Ironstone Rupestrian Grasslands. In: G.W. Fernandes (Ed.): Ecology and Conservation of Mountaintop Grasslands in Brazil. Switzerland: Springer. P. 449–478.
Fernandes G.W., Barbosa N.P.U., Alberton B., Barbieri A., Dirzo R., Goulart F., Guerra T.J., Morellato L.P.C., Solar R.R.C. 2018. The deadly route to collapse and the uncertain fate of Brazilian rupestrian grasslands. Biodiversity and Conservation 27(10): 2587–2603. DOI: 10.1007/s10531-018-1556-4
Fernandes G.W., Bahia T.O., Almeida H.A., Conceição A.A., Loureiro C.G., Luz G.R., Neves A.C.O., Oki Y., Pereira G.C.N., Pirani J.R., Viana P.L., Negreiros D. 2020a. Floristic and functional identity of rupestrian grasslands as a subsidy for environmental restoration and policy. Ecological Complexity 43: 100833. DOI: 10.1016/j.ecocom.2020.100833
Fernandes G.W., Arantes-Garcia L., Barbosa M., Barbosa N.P.U., Batista E.K.L., Beiroz W., Resende F.M., Abrahão A., Almada E.D., Alves E., Alves N.J., Angrisano P., Arista M., Arroyo J., Arruda A.J., Bahia T.O., Braga L., Brito L., Callisto M., Caminha-Paiva D., Carvalho M., Conceição A.A., Costa L.N., Cruz A., Cunha-Blum J., Dagevos J., Dias B.F., Pinto V.D., Dirzo R., Domingos D.Q. et al. 2020b. Biodiversity and ecosystem services in the campo rupestre: a road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspectives in Ecological Conservation 18(4): 213–222. DOI: 10.1016/j.pecon.2020.10.004
Gastauer M., Sarmento P.S.M., Santos V.C.A., Caldeira C.F., Ramos S.J., Teodoro G.S., Siqueira J.O. 2020. Vegetative functional traits guide plant species selection for initial mineland rehabilitation. Ecological Engineering 148: 105763. DOI: 10.1016/j.ecoleng.2020.105763
Giulietti A.M., Pirani J.R., Harley R.M. 1997. Espinhaço range region, eastern Brazil. In: S.D. Davis, V.H. Heywood, O. Herrera-MacBryde, J. Villa-Lobos, A.C. Hamilton (Eds.): Centres of plant diversity: a guide and strategy for their conservation. Vol. 3. Cambridge: WWF/IUCN. P. 397–404.
Gomes V.M., Negreiros D., Fernandes G.W., Pires A.C.V., Silva A.C.D.R., Le Stradic S. 2018. Long‐term monitoring of shrub species translocation in degraded Neotropical mountain grassland. Restoration Ecology 26(1): 91–96. DOI: 10.1111/rec.12537
Gomes V.M., Assis I.R., Hobbs R.J., Fernandes G.W. 2021. Glomalin-related soil protein reflects the heterogeneity of substrate and vegetation in the campo rupestre ecosystem. Journal of Soil Science and Plant Nutrition 21(1): 733–743. DOI: 10.1007/s42729-020-00396-7
Gosper C.R., Coates D.J., Hopper S.D., Byrne M., Yates C.J. 2021. The role of landscape history in the distribution and conservation of threatened flora in the Southwest Australian Floristic Region. Biological Journal of the Linnean Society 133(2): 394–410. DOI: 10.1093/biolinnean/blaa141
Gotelli N.J., Ellison A.M. 2004. A Primer of Ecological Statistics. Sunderland, MA: Sinauer Associates. 510 p.
Hopper S.D., Silveira F.A., Fiedler P.L. 2016. Biodiversity hotspots and Ocbil theory. Plant and Soil 403(1–2): 167–216. DOI: 10.1007/s11104-015-2764-2
Jacobi C.M., Carmo F.F. 2011. Life-forms, pollination and seed dispersal syndromes in plant communities on ironstone outcrops, SE Brazil. Acta Botanica Brasilica 25(2): 395–412. DOI: 10.1590/S0102-33062011000200016
Jacobi C.M., do Carmo F.F., Vincent R.C., Stehmann J.R. 2007. Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiversity and Conservation 16(7): 2185–2200. DOI: 10.1007/s10531-007-9156-8
Jacobi C.M., do Carmo F.F., Vincent R.C. 2008. Estudo fitossociológico de uma comunidade vegetal sobre canga como subsídio para a reabilitação de áreas mineradas no Quadrilátero Ferrífero, MG. Revista Árvore 32(2): 345–353. DOI: 10.1590/S0100-67622008000200017
Magurran A.E. 2004. Measuring Biological Diversity. Oxford: Blackwell. 256 p.
Messias M.C.T.B., Leite M.G.P., Meira Neto J.A.A., Kozovits A.R., Tavares R. 2013. Soil-Vegetation Relationship in Quartzitic and Ferruginous Brazilian Rocky Outcrops. Folia Geobotanica 48(4): 509–521. DOI: 10.1007/s12224-013-9154-4
Miola D.T., Ramos V.D., Silveira F.A. 2021. A brief history of research in campo rupestre: identifying research priorities and revisiting the geographical distribution of an ancient, widespread Neotropical biome. Biological Journal of the Linnean Society 133(2): 464–480. DOI: 10.1093/biolinnean/blaa175
Neves D.M., Dexter K.G., Pennington R.T., Bueno M.L., de Miranda P.L., Oliveira-Filho A.T. 2018. Lack of floristic identity in campos rupestres – A hyperdiverse mosaic of rocky montane savannas in South America. Flora 238: 24–31. DOI: 10.1016/j.flora.2017.03.011
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. 2015. Vegan: Community Ecology Package. R Package Version 2.2-0. Available from: http://CRAN.Rproject.org/package=vegan
Rapini A., Bitencourt C., Luebert F., Cardoso D. 2021. An escape-to-radiate model for explaining the high plant diversity and endemism in campos rupestres. Biological Journal of the Linnean Society 133(2): 481–498. DOI: 10.1093/biolinnean/blaa179
R Development Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available from: https://www.r-project.org/
Salles D., Carmo F., Jacobi C. 2019. Habitat Loss Challenges the Conservation of Endemic Plants in Mining-Targeted Brazilian Mountains. Environmental Conservation 46(2): 140–146. DOI: 10.1017/S0376892918000401
Schaefer C.E.G.R., Cândido H.G., Corrêa G.R., Nunes J.A., Arruda D.M. 2016a. Soils associated with rupestrian grasslands. In: G.W. Fernandes (Ed.): Ecology and Conservation of Mountaintop Grasslands in Brazil. Switzerland: Springer. P. 55–69.
Schaefer C.E.G.R., Corrêa G.R., Candido H.G., Arruda D.M., Nunes J.A., Araujo R.W., Rodrigues P.M.S., Fernandes-Filho E.I., Pereira A.F.S., Brandão P.C., Neri A.V. 2016b. The physical environment of rupestrian grasslands (campos rupestres) in Brazil: geological, geomorphological and pedological characteristics, and interplays. In: G.W. Fernandes (Ed.): Ecology and Conservation of Mountaintop Grasslands in Brazil. Switzerland: Springer. P. 15–53.
Silveira F.A.O., Negreiros D., Barbosa N.P.U., Buisson E., Carmo F.F., Carstensen D.W., Conceição A.A., Cornelissen T.G., Echternacht L., Fernandes G.W., Garcia Q.S., Guerra T.J., Jacobi C.M., Lemos-Filho J.P., Le Stradic S., Morellato L.P.C., Neves F.S., Oliveira R.S., Schaefer C.E., Viana P.L., Lambers H. 2016. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil 403(1–2): 129–152. DOI: 10.1007/s11104-015-2637-8
Silveira F.A., Perillo L.N., Carmo F.F., Kamino L.H., Mota N.F., Viana P.L., Carmo F.F., Ranieri B.D., Ferreira M.C., Vial L., Alvarenga L.J., Santos F.M.G. 2020. Vegetation misclassification compromises conservation of biodiversity and ecosystem services in Atlantic Forest ironstone outcrops. Perspectives in Ecology and Conservation 18(4): 238–242. DOI: 10.1016/j.pecon.2020.10.001
Silveira F.A.O., Fiedler P.L., Hopper S.D. 2021. OCBIL theory: a new science for old ecosystems. Biological Journal of the Linnean Society 133(2): 251–265. DOI: 10.1093/biolinnean/blab038
Tameirão L.B.S., Caminha-Paiva D., Negreiros D., Veloso M.D.M., Berbara R.L.L., Dias L.E., Pierce S., Fernandes G.W. 2021. Role of environmental filtering and functional traits for species coexistence in a harsh tropical montane ecosystem. Biological Journal of the Linnean Society 133(2): 546–560. DOI: 10.1093/biolinnean/blaa181
UNESCO. 2016. Directory of the World Network of Biosphere Reserves. Available from: http://www.unesco.org/new/en/natural-sciences/environment/ecologicalsciences/biosphere-reserves/world-network-wnbr/wnbr/
Veldman J.W., Buisson E., Durigan G., Fernandes G.W., Le Stradic S., Mahy G., Negreiros D., Overbeck G.E., Veldman R.G, Zaloumis N.P., Putz F.E., Bond W.J. 2015. Toward an old-growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment 13(3): 154–162. DOI: 10.1890/140270
Zappi D.C., Moro M.F., Walker B., Meagher T., Viana P.L., Mota N.F., Watanabe M.T., Nic Lughadha E. 2019. Plotting a future for Amazonian canga vegetation in a campo rupestre context. PloS ONE 14(8): e0219753. DOI: 10.1371/journal.pone.0219753