References |
Agisoft LLC. 2019. Agisoft Metashape (Version 1.5). Software. Available from: https://www.agisoft.com/ Aleshko R.A., Alekseeva, A.A., Shoshina K.V., Bogdanov A.P., Guriev A.T. 2017. Development of the methodology to update the information on a forest area using satellite imagery and small UAVs. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 14(5): 87–99. DOI: 10.21046/2070-7401-2017-14-5-87-99 [In Russian] Alonzo M., Bookhagen B., Roberts D.A. 2014. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment 148: 70–83. DOI: 10.1016/j.rse.2014.03.018 Alonzo M., Andersen H.E., Morton D.C., Cook B.D. 2018. Quantifying Boreal Forest Structure and Composition Using UAV Structure from Motion. Forests 9(3): 119. DOI: 10.3390/f9030119 Anderson K., Gaston K.J. 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment 11(3): 138–146. DOI: 10.1890/120150 Arkhipov V.Yu., Murashev I.A., Buyvolov Yu. A. 2020. Birds of the Prioksko-Terrasnyi biosphere Reserve (the annotated species lists). Moscow: KMK Scientific Press Ltd. 80 p. (Flora and fauna of state nature reserves. Vol. 135]. [In Russian] Bennett G., Hardy A., Bunting P., Morgan P., Fricker A. 2020. A Transferable and Effective Method for Monitoring Continuous Cover Forestry at the Individual Tree Level Using UAVs. Remote Sensing 12(13): 2115. DOI: 10.3390/rs12132115 Birdal A.C., Avdan U., Türk T. 2017. Estimating tree heights with images from an unmanned aerial vehicle. Geomatics, Natural Hazards and Risk 8(2): 1144–1156. DOI: 10.1080/19475705.2017.1300608 Bogdanov A.P., Aleshko R.A., Ilintsev A.S. 2019. Relationship between tree crown diameter and various taxation indicators in the North-taiga forest area. Forest Science Issues 2(4): 1–10. DOI: 10.31509/2658-607x-2019-2-4-1-10 [In Russian] Chen Q., Baldocchi D., Gong P., Kelly M. 2006. Isolating individual trees in a savanna woodland using small footprint lidar data. Photogrammetric Engineering and Remote Sensing 72(8): 923–932. DOI: 10.14358/PERS.72.8.923 Dalponte M., Coomes D.A. 2016. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods in Ecology and Evolution 7(10): 1236–1245. DOI: 10.1111/2041-210X.12575 Dandois J., Ellis E.C. 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing of Environment 136: 259–276. DOI: 10.1016/j.rse.2013.04.005 Denisov S.A., Domrachev A.A., Elsukov A.S. 2016. Quadrocopter practical application for forest regeneration monitoring. Vestnik of Volga State University of Technology. Series: Forest. Ecology. Nature Management 4(32): 34–46. DOI: 10.15350/2306-2827.2016.4.34 [In Russian] Domnina E.A., Timonov A.S., Kantor G.Ya., Kislitsyna, A.P. Savinykh V.P. 2017. Experience of detailed mapping of floodplain meadow vegetation. Theoretical and Applied Ecology 1: 42–49. DOI: 10.21046/2070-7401-2020-17-1-150-163 [In Russian] Ershov D.V., Gavrilyuk E.A., Belova E.I., Nikitina A.D. 2020. Determination of the species structure of a forest area using orthophotoimages from unmanned aerial vehicles. In: Actual Problems of Modern Forestry. Simferopol: ARIAL. P. 141–152. [In Russian] Eysn L., Hollaus M., Lindberg E., Berger F., Monnet J.M., Dalponte M., Kobal M., Pellegrini M., Lingua E., Mongus D., Pfeifer P. 2015. A benchmark of lidar-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 6(5): 1721–1747. DOI: 10.3390/f6051721 Goutte C., Gaussier E. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Proceedings of the European Conference on Information Retrieval. Berlin/Heidelberg: Springer. P. 345–359. Hansen E.H., Gobakken T., Bollandsås O.M., Zahabu E., Næsset E. 2015. Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data. Remote Sensing 7(1): 788–807. DOI: 10.3390/rs70100788 Hudak A.T., Haren A.T., Crookston N.L., Liebermann R.J., Ohmann J.L. 2014. Imputing forest structure attributes from stand inventory and remotely sensed data in western Oregon, USA. Forest Science 60(2): 253–269. DOI: 10.5849/forsci.12-101 Ivanova N.V., Shashkov M.P., Shanin V.N., Grabarnik P.Ya. 2020. Quality Assessment of Automatical Tree Detection Based on Aerial Photography Using a Quadcopter. In: Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS. Article: e36. DOI: 10.17537/icmbb20.31 [In Russian] Khosravipour A., Skidmore A.K., Skidmore M., Wang T., Hussin Y. 2014. Generating Pit-free Canopy Height Models from Airborne Lidar. Photogrammetric Engineering and Remote Sensing 80(9): 863–872. DOI: 10.14358/PERS.80.9.863 Koch B., Heyder U., Weinacker H. 2006. Detection of individual tree crowns in airborne lidar data. Photogrammetric Engineering and Remote Sensing 72(4): 357–363. DOI: 10.14358/PERS.72.4.357 Kolarik N.E., Gaughan A.E., Stevens F.R., Pricope N.G., Woodward K., Cassidy L., Salerno J., Hartter J. 2020. A multi-plot assessment of vegetation structure using a micro-unmanned aerial system (UAS) in a semi-arid savanna environment. ISPRS Journal of Photogrammetry and Remote Sensing 164: 84–96. DOI: 10.1016/j.isprsjprs.2020.04.011 Kovyazin V.F., Vinogradov K.P., Kitcenko A.A., Vasilyeva E.A. 2020. Airborne laser scanning for clarification of the valuation indicators of forest stands. Russian Forestry Journal 6: 42–54. DOI: 10.37482/0536-1036-2020-6-42-54 [In Russian] Krisanski S., Taskhiri M.S., Turner P. 2020. Enhancing Methods for Under-Canopy Unmanned Aircraft System Based Photogrammetry in Complex Forests for Tree Diameter Measurement. Remote Sensing 12(10): 1652. DOI: 10.3390/rs12101652 Li W., Guo Q., Jakubowski M.K., Kelly M. 2012. A new method for segmenting individual trees from the lidar point cloud. Photogrammetric Engineering & Remote Sensing 78(1): 75–84. DOI: 10.14358/PERS.78.1.75 Medvedev A.A., Telnova N.O., Kudikov A.V. 2019. Highly detailed remote sensing monitoring of tree overgrowth on abandoned agricultural lands. Forest Science Issues 3: 1–12. DOI: 10.31509/2658-607x-2019-2-3-1-12 [In Russian] Medvedev A.A., Telnova N.O., Kudikov A.V., Alekseenko N.A. 2020. Use of photogrammetric point clouds for the analysis and mapping of structural variables in sparse northern boreal forests. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 17(1): 150–163. DOI: 10.21046/2070-7401-2020-17-1-150-163 [In Russian] Messinger M., Gregory P., Asner G.P., Silman M. 2016. Rapid assessment of Amazon forest structure and biomass using small unmanned aerial systems. Remote Sensing 8(8): 615. DOI: 10.3390/rs8080615 Miller E., Dandois J.P., Detto M., Hall J.S. 2017. Drones as a Tool for Monoculture Plantation Assessment in the Steepland Tropics. Forests 8(5): 168. DOI: 10.3390/f8050168 Mohan M., Silva C.A., Klauberg C., Jat P., Catts G., Cardil A., Hudak A.T., Dia M. 2017. Individual tree detection from Unmanned Aerial Vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 8(9): 340. DOI: 10.3390/f8090340 Nunes M.H., Ewers R.M., Turner E.C., Comes D.A. 2017. Mapping Aboveground Carbon in Oil Palm Plantations Using LiDAR: A Comparison of Tree-Centric versus Area-Based Approaches. Forests 9(8): 816. DOI: 10.3390/rs9080816 Otero V., Van De Kerchove R., Satyanarayana B., Martínez-Espinosa C., Fisol M.A.B., Ibrahim M.R.B., Sulong I., Mohd-Lokman H., Lucas R., Dahdouh-Guebas F. 2018. Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. Forest Ecology and Management 411: 35–45. DOI: 10.1016/j.foreco.2017.12.049 Pajares G. 2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering and Remote Sensing 81(4): 281–330. DOI: 10.14358/PERS.81.4.281 Panagiotidis D., Abdollahnejad A., Surový P., Chiteculo V. 2017. Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing 38(8–10): 2392–2410. DOI: 10.1080/01431161.2016.1264028 Picos J., Bastos G., Míguez D., Alonso L., Armesto J. 2020. Individual Tree Detection in a Eucalyptus Plantation Using Unmanned Aerial Vehicle (UAV)-LiDAR. Remote Sensing 12(5): 885. DOI: 10.3390/rs12050885 Popescu S., Wynne R. 2004. Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height. Photogrammetric Engineering and Remote Sensing 70(5): 589–604. DOI: 10.14358/PERS.70.5.589 Puliti S., Ørka H.O., Gobakken T., Næsset E. 2015. Inventory of small forest areas using an unmanned aerial system. Remote Sensing 7(8): 9632–9654. DOI: 10.3390/rs70809632 QGIS Development Team. 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available from: http://qgis.osgeo.org R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.R-project.org/ Roussel J.R., Auty D., De Boissieu F., Meador A.S., Jean-François B. 2020. Airborne LiDAR Data Manipulation and Visualization for Forestry Applications. Package 'lidR'. Version 2.2.2. Available from: https://CRAN.R-project.org/package=lidR Sannikov P.Yu., Andreev D.N., Buzmakov S.A. 2018. Identification and analysis of deadwood using an unmanned aerial vehicle. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 15(3): 103–113. DOI: 10.21046/2070-7401-2018-15-3-103-113 [In Russian] Shashkov M., Ivanova N., Shanin V., Grabarnik P. 2019. Ground Surveys Versus UAV Photography: The Comparison of Two Tree Crown Mapping Techniques. In: I. Bychkov, V. Voronin (Eds.): Information Technologies in the Research of Biodiversity. Cham: Springer. P. 48–56. DOI: 10.1007/978-3-030-11720-7_8 Silva C.A., Hudak A.T., Vierling L.A., Loudermilk E.L., O'Brien J.J., Hiers J.K., Jack S.B., Gonzalez-Benecke C., Lee H., Falkowski M.J., Khosravipour A. 2016. Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. Canadian Journal of Remote Sensing 42(5): 554–573. DOI: 10.1080/07038992.2016.1196582 Sokolova M., Japkowicz N., Szpakowicz S. 2008. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. Proceedings of the Australasian Joint Conference on Artificial Intelligence. Berlin/Heidelberg: Springer. P. 1015–1021. Zarco-Tejada P.J., Diaz-Varela R., Angileri V., Loudjani P. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy 55: 89–99. DOI: 10.1016/j.eja.2014.01.004 Zaugolnova L.B. (Ed.). 2000. Assessment and conservation of forest biodiversity in the reserves of European Russia. Moscow: Nauchnyy Mir. 196 p. [In Russian] Zhang J., Hu J., Lian J., Fan Z., Ouyang X., Ye W. 2016. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation 198: 60–69. DOI: 10.1016/j.biocon.2016.03.027 Zhang W., Qi J., Wan P., Wang H., Xie D., Wang X., Yan G. 2016. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sensing 8(6): 501. DOI: 10.3390/rs8060501 |