Article

Article name CARBON STOCK IN SUBTROPICAL NATIVE FORESTS IN A SOUTH AMERICAN PROTECTED AREA
Authors

Julian A. Sabattini, PhD, Assistant Teacher and Researcher of Department Ecology, School of Agronomy, National University of Entre Rios (Route No. 11, Km 10. PC: 3100, Oro Verde, Entre Rios, República Argentina); iD ORCID: https://orcid.org/0000-0001-6449-3391; e-mail: julian.sabattini@fca.uner.edu.ar
Rafael A. Sabattini, Agricultural Engineer, Professor and Researcher of Department Ecology, School of Agronomy, National University of Entre Rios (Route No. 11, Km 10. PC: 3100, Oro Verde, Entre Rios, República Argentina); iD ORCID: https://orcid.org/0000-0003-3510-4646; e-mail: rafael.sabattini@fca.uner.edu.ar
Juan C. Cian, Agricultural Engineer, Independent professional and collaborator National University of Entre Rios (Route No. 11, Km 10. PC: 3100, Oro Verde, Entre Rios, República Argentina); iD ORCID: https://orcid.org/0000-0001-8560-4046; e-mail: juancarloscian@hotmail.com
Ivan A. Sabattini, Agricultural Engineer, Independent professional and collaborator National University of Entre Rios (Route No. 11, Km 10. PC: 3100, Oro Verde, Entre Rios, República Argentina); e-mail: ivanagro@live.com.ar

Reference to article

Sabattini J.A., Sabattini R.A., Cian J.C., Sabattini I.A. 2021. Carbon stock in subtropical native forests in a South American Protected Area. Nature Conservation Research 6(2): 66–79. https://dx.doi.org/10.24189/ncr.2021.027

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2021.027
Abstract

In forests, it is possible to sequester the carbon emitted by industrial activities, although global deforestation has recently increased considerably. Protected Areas make a significant contribution to mitigate negative effects of climate change. In this sense, the aim of this study is to estimate the carbon storage of the different types of subtropical native forests in the Protected Area «Estancia El Caraya» (hereinafter – PA «El Caraya»), located in the Mesopotamian Spinal. The study was carried out in the province of Entre Rios, Argentina. We evaluated the carbon stock in the soil and herbaceous, shrub and tree components of five various environments with native forests as the dominant biome. The soil component represented 81% of the carbon stock in native forest, while the remaining percentage is distributed in trees (11%), shrubs (6%), and herbaceous vegetation (2%). Native forest of PA «El Caraya» stores 0.974 t C × km-2 (3.56 t CO2 × km-2), 39.4% less than the world average in this conservation category. These differences are due to the high heterogeneity of the natural environments in the world due to the very diverse ecological conditions. Proper management practice of subtropical native forests in the Spinal Mesopotamian contributes highly to reduction of carbon in atmosphere. Application of forest management techniques in Protected Areas allows obtaining sustainable forests that maximise the potential of this area.

Keywords

carbon sink, climate change, ecosystem services, El Caraya, policies public, protected forest, reduction of emissions

Artice information

Received: 26.06.2020. Revised: 14.02.2021. Accepted: 24.02.2021.

The full text of the article
References

Al-Shammary A.A.G., Kouzani A.Z., Kaynak A., Khoo S.Y., Norton M., Gates W. 2018. Soil Bulk Density Estimation Methods: A Review. Pedosphere 28(4): 581–596. DOI: 10.1016/S1002-0160(18)60034-7
Baker T.R., Jones J.P.G., Rendón Thompson O.R., Cuesta R.M.R., Del Castillo D., Aguilar I.C., Torres J., Healey J.R. 2010. How can ecologists help realise the potential of payments for carbon in tropical forest countries? Journal of Applied Ecology 47(6): 1159–1165. DOI: 10.1111/j.1365-2664.2010.01885.x
Barth S.R., Giménez A.M., Joseau M.J., Gauchat M.E., Fassola H.E., 2016. Aboveground biomass allocation of Grevillea robusta A. based on initial planting density. Scientia Forestalis 44(111): 653–664. DOI: 10.18671/scifor.v44n111.11
Bassi A.M., Yudken J.S., Ruth M. 2009. Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors. Energy Policy 37(8): 3052–3060. DOI: 10.1016/j.enpol.2009.03.055
Brockerhoff E.G., Barbaro L., Castagneyrol B., Forrester D.I., Gardiner B., González-Olabarria J.R., Lyver P.O.B., Meurisse N., Oxbrough A., Taki H., Thompson I.D., van der Plas F., Jactel H. 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation 26(13): 3005–3035. DOI: 10.1007/s10531-017-1453-2
Brown P. 1998. Climate, biodiversity, and forests: issues and opportunities emerging from the Kyoto protocol. Washington: World Resources Institute. 36 p.
Brown S., Lugo A. 1984. Biomass of Tropical Forests: A New Estimate Based on Forest Volumes. Science 223(4642): 1290–1293. DOI: 10.1126/science.223.4642.1290
Cerana J., Wilson M., Pozzolo O., De Battista J.J., Rivarola S., Díaz E. 2005. Relaciones matemáticas entre la resistencia mecánica a la penetración y el contenido hídrico en un Vertisol. In: F.J. Samper Calvete, A. Paz González (Eds.): Estudios de la Zona No Saturada del Suelo. Vol. 7. P. 159–163.
Chagas C.I., Kraemer F.B. 2018. Runoff, soil erosion and contamination of surface water resources by sediments associated with extensive agricultural activities: some elements for its analysis. Ciudad Autónoma de Buenos Aires: Editorial Facultad de Agronomía. 33 p.
Collins M.B., Mitchard E.T.A. 2017. A small subset of protected areas are a highly significant source of carbon emissions. Scientific Reports 7: 41902. DOI: 10.1038/srep41902
Cozzo D. 1979. Arboles forestales, maderas y silvicultura de la Argentina. Buenos Aires: ACME. 289 p.
Davis M.R., Allen R.B., Clinton P.W. 2003. Carbon storage along a stand development sequence in a New Zealand Nothofagus forest. Forest Ecology and Management 177(1–3): 313–321. DOI: 10.1016/S0378-1127(02)00333-X
de Petre A., Karlin U., Ali S., Reynero N. 2011. Alternativas de sustentabilidad del bosque nativo del Espinal. Area de Captura de Carbono. Argentina: PIARFON. 15 p.
Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Trexler M.C., Wisniewski J. 1994. Carbon Pools and Flux of Global Forest Ecosystems. Science 263(5144): 185–190. DOI: 10.1126/science.263.5144.185
FAO. 2007. State of the World's Forests 2007. Rome: FAO. 197 p.
FAO. 2009. State of the World's Forests 2009. Rome: FAO. 175 p.
FAO. 2018. Measuring and modelling soil carbon stocks and stock changes in livestock production systems – Guidelines for assessment (Draft for public review). Livestock Environmental Assessment and Performance (LEAP) Partnership. Rome: FAO. 201 p.
Fernandez P.D., Gasparri N.I., Jobbágy E., Mazzini F., Oviedo E., Radrizzani A. 2018. Stock de carbono en vegetación leñosa aérea y su relación con disturbios en sistemas silvopapstoriles del Chaco Seco Argentino. In: IV Congreso Nacional de Sistemas Silvopastoriles. Villa Langostura, Argentina. P. 508–517.
Fragoso-López P.I., Rodríguez-Laguna R., Otazo-Sánchez E.M., González-Ramírez C.A., Valdéz-Lazalde J.R., Cortés-Blobaum H.J., Razo-Zárate R. 2017. Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K.) Schlecht. et Cham Forest. Forests 8(11): 429–442. DOI: 10.3390/f8110429
Francis J.K. 2000. Estimating Biomass and Carbon Content of Saplings in Puerto Rican Secondary Forests. Caribbean Journal of Science 36: 346–354.
Frangi J., Pérez C., Goya J., Tesón N., Barrera M., Arturi M. 2016. Experimental model of a Eucalyptus grandis plantation in Concordia, Entre Ríos. Bosque. 37(1): 191–204. DOI: 10.4067/S0717-92002016000100018
Franquis F.R., Infante A.M. 2003. Los Bosques y su Importancia para el Suministro de Servicios Ambientales. Félix R. Franquis; Angel M. Infante. Revista Forestal Latinoamericana 18: 17–30.
Freibauer A., Rounsevell M.D.A., Smith P., Verhagen J. 2004. Carbon sequestration in the agricultural soils of Europe. Geoderma 122(1): 1–23. DOI: 10.1016/j.geoderma.2004.01.021
Gaillard de Benitez C., Pece M., Juárez de Galíndez M., Maldonado A., Acosta V.H., Gómez A. 2014. Aerial biomass of individuals of Quebracho blanco (Aspidosperma quebracho-blanco) in two towns (localitites) of the Dry Chaco Park. Quebracho 9: 115–127.
Gasparri I., Manghi E. 2004. Estimación de volumen, biomasa y contenido de carbono de las regiones forestales argentinas. Buenos Aires: Secretaria de Desarrollo y Ambiente Sustentable. 26 p.
Gasparri N.I., Grau H.R., Manghi E. 2008. Carbon Pools and Emissions from Deforestation in Extra-Tropical Forests of Northern Argentina Between 1900 and 2005. Ecosystems 11(8): 1247–1261. DOI: 10.1007/s10021-008-9190-8
Gaveau D.L.A., Sheil D., Husnayaen, Salim M.A., Arjasakusuma S., Ancrenaz M., Pacheco P., Meijaard E. 2016. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Scientific Reports 6: 32017. DOI: 10.1038/srep32017
Gifford R. 2000. Carbon contens of above-ground tissues of forest and woodland trees. Australian Greenhouse Office. National Carbon Accounting System Technical Report No.22. Canberra: Australian Greenhouse Office. 17 p.
Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. 2013. High-resolution global maps of 21st-century forest cover change. Science 342(6160): 850–853. DOI: 10.1126/science.1244693
Hedde M., Aubert M., Decaëns T., Bureau F. 2008. Dynamics of soil carbon in a beechwood chronosequence forest. Forest Ecology and Management 255(1): 193–202. DOI: 10.1016/j.foreco.2007.09.004
Houghton R.A. 2003. Why are estimates of the terrestrial carbon balance so different? Global Change Biology 9(4): 500–509. DOI: 10.1016/j.foreco.2007.09.004
IPCC. 1995. Greenhouse Gas Inventory Reference Manual. IPCC Guidelines for National Greenhouse Gas Inventories. London, England. 274 p.
IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC. 151 p.
Jackson M. 1964. Análisis químico de suelos. Barcelona, España: Omega SA. 662 p.
Janzen H.H. 2004. Carbon cycling in earth systems – a soil science perspective. Agriculture, Ecosystems and Environment 104(3): 399–417. DOI: 10.1016/j.agee.2004.01.040
Lucero Ignamarca A., Muñoz Sáez F., Cancino J., Sotomayor Garreton A., Dube F., Villarroel Muñoz A., Sáez Carrillo K. 2018. Biomass function for Acacia caven (Mol.) Mol. distributed in the dry land areas of south central Chile. Revista de la Facultad de Ciencias Agrarias 50(2): 187–201.
Malanima P. 2006. Energy crisis and growth 1650–1850: the European deviation in a comparative perspective. Journal of Global History 1(1): 101–121. DOI: 10.1017/S1740022806000064
Malhi Y., Baldocchi D.D., Jarvis P.G. 1999. The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment 22(6): 715–740. DOI: 10.1046/j.1365-3040.1999.00453.x
Manrique S., Franco J. 2012. Cultivos agricolas y su rol como reservorios de carbono y fuentes de energía. Avances en Energia Renovable y Medio Ambiente 16: 1–8.
Manrique S., Franco J., Nuñez V., Seghezzo L. 2009. Estimación de densidad de biomasa aerea en ecosistemas naturales de la provincia de Salta. Avances en Energías Renovables y Medio Ambiente 13: 37–45.
Martin A.R., Thomas S.C. 2011. A Reassessment of Carbon Content in Tropical Trees. PLoS ONE 6(8): e23533. DOI: 10.1371/journal.pone.0023533
Matteuci S., Colma A. 1982. Metodología para el estudio de la vegetación. Washignton, USA: General Secretariat of the Organization of American States. 198 p.
Melillo J.M., Lu X., Kicklighter D.W., Reilly J.M., Cai Y., Sokolov A.P. 2016. Protected areas' role in climate-change mitigation. Ambio 45(2): 133–145. DOI: 10.1007/s13280-015-0693-1
Metz B., Davidson O., Swart R., Pan J. 2001. Climate Change 2001. Mitigation. Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, England. 231 p.
Monreal C.M., Etchevers J.D., Acosta M., Hidalgo C., Padilla J., López R.M., Jiménez L., Velázquez A. 2005. A method for measuring above- and below-ground C stocks in hillside landscapes. Canadian Journal of Soil Science 85(4): 523–530. DOI: 10.4141/S04-086
Mori A.S., Lertzman K.P., Gustafsson L. 2017. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. Journal of Applied Ecology 54(1): 12–27. DOI: 10.1111/1365-2664.12669
Muñoz C., Ovalle C., Zagal E. 2007. Distribution of soil organic carbon stock in an alfisol profile in Mediterranean Chilean ecosystems. Journal of Soil Science and Plant Nutrition 7(1): 15–27.
Muzzachiodi N., Sabattini R.A. 2019. Descripción de la fauna asociada y su nivel de conservación. Corredores faunísticos. In: J.A. Sabattini, R.A. Sabattini (Eds.): Área natural protegida reserva de usos múltiples Estancia «El Carayá»: Producción, conservación y recuperación de ecosistemas en el Espinal Argentino. Rafaela, Argentina. P. 95–131.
Nauclér T., Enkvist P. 2009. Pathways to a Low-Carbon Economy: Version 2 of the global greenhouse gas abatement cost curve. McKinsey and Company. 98 p.
Nelson D.W., Sommers L.E. 1982. Total carbon, organic carbon and organic matter. In: A.L. Page (Ed.): Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2, Second Edition. Madison, Wisconsin, USA: American Society of Agronomy and Soil Science Society of America. P. 539–579. DOI: 10.2134/agronmonogr9.2.2ed.c29
Nogueira E.M., Yanai A.M., de Vasconcelos S.S., de Alencastro Graça P.M.L., Fearnside P.M. 2018. Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia. Regional Environmental Change 18(1): 261–270. DOI: 10.1007/s10113-017-1198-1
Odum E.P. 1969. The Strategy of Ecosystem Development. Science 164(3877): 262–270. DOI: 10.1126/science.164.3877.262
Ontiveros A., Manrique S., Franco J., Díaz R., Barranco N. 2015. Biomasa y stock de carbono en la Reserva de Campo Alegre, La Caldera, provincia de Salta. Avances en Energia Renovable y Medio Ambiente 19: 1–11.
Oyarzabal M., Clavijo J., Oakley L., Biganzoli F., Tognetti P., Barberis I., Maturo H.M., Aragón R., Campanello P.I., Prado D., Oesterheld M., León R.J.C. 2018. Vegetation units of Argentina. Ecología Austral 28(1): 40–63. DOI: 10.25260/EA.18.28.1.0.399
Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L., Shvidenko A., Lewis S.L., Canadell J.G., Ciais P., Jackson R.B., Pacala S.W., McGuire A.D., Piao S., Rautiainen A., Sitch S., Hayes D. 2011. A Large and Persistent Carbon Sink in the World's Forests. Science 333(6045): 988–993. DOI: 10.1126/science.1201609
Pardos J.A. 2010. Los ecosistemas forestales y el secuestro de carbono ante el calentamiento global. Madrid, España. 253 p.
Peri P.L., Gargaglione V., Martínez Pastur G., Lencinas M.V. 2010. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. Forest Ecology and Management 260(2): 229–237. DOI: 10.1016/j.foreco.2010.04.027
Peri P.L., Ormachea S., Martinez P.G., Lencinas M.V. 2013. Inventario provincial del contenido de carbono en bosques nativos de ñire en Santa Cruz. In: Actas 4to Congreso Forestal Argentino y Latinoamericano. Misiones: Asociación Forestal Argentina. P. 1–10.
Risio Allione L. 2012. Cuantificación de biomasa y carbono en bosques nativos de Prosopis caldenia (Burkart) en la Pampa semiárida. Msc Thesis. Argentina. 71 p.
Roberts C.M., O'Leary B.C., Hawkins J.P. 2020. Climate change mitigation and nature conservation both require higher protected area targets. Philosophical Transactions of the Royal Society B: Biological Sciences 375(1794): 20190121. DOI: 10.1098/rstb.2019.0121
Rojas A., Saluso J.H. 1987. Informe Climático de la Provincia de Entre Ríos. Publicación Técnica No.14. INTA EEA Paraná. Instituto Nacional de Tecnología Agropecuaria. 26 p.
Sabattini J.A. 2015. Land cover and land use changes of native forests categories: the case of the Atencio District, Argentina, in the period from 1984 to 2013. Forest Systems 24(2): e028. DOI: 10.5424/fs/2015242-06680
Sabattini J.A., Sabattini R.A. 2018. Sucesión vegetal y restauración ecológica. Revista Científica Agropecuaria 22(1–2): 31–53.
Sabattini J.A., Sabattini R.A. 2019. Área natural protegida reserva de usos múltiples Estancia «El Carayá»: Producción, conservación y recuperación de ecosistemas en el Espinal Argentino. Rafaela, Argentina: SocialMedia. 134 p.
Sabattini J.A., Sabattini R.A., Ledesma S. 2015a. Characterization of Native Forest in North Central Entre Rios (Argentina). Agrociencia 19(2): 8–16.
Sabattini J.A., Boschetti N.G., Sabattini R.A., Quintero C.E., Hernandez J.P., Befani R. 2015b. Vegetation units of native forest, according to soil conditions (Entre Ríos, Argentina). Avances en Investigación Agropecuaria 19: 79–96.
Sabattini J.A., Sabattini R.A., Urteaga Omar A.F., Bacigalupo M., Cian J.C., Sabattini I.A., Dopazo V.M. 2019. Recovery of the natural grassland in a degraded native forest of the Argentine Espinal through aerial chemical control of shrubs. Investigación Agraria 12(1): 93–107. DOI: 10.18004/investig.agrar.2019.diciembre.93-107
Sabattini R.A., Bongiovanni S.N. 2019. Caracterización del medio natural y socioeconomico. In: J.A. Sabattini, R.A. Sabattini (Eds.): Área natural protegida reserva de usos múltiples Estancia «El Carayá»: Producción, conservación y recuperación de ecosistemas en el Espinal Argentino. Rafaela, Argentina. P. 31–49.
Sabattini R.A., Wilson M.G., Muzzachiodi N., Dorsch A.F. 1999. Guide to characterize the agroecosystems of northern center Entre Ríos. Revista Cientifica Agropecuaria 3: 7–19.
Sabattini R.A., Muzzachiodi N., Dopazo V., Dorsch A.F., Micheloud L., Serro C., Garcia A., Cencig G. 2003. Rotational grazing implementation in native forest of Feliciano (Entre Ríos). Revista Cientifica Agropecuaria 7(1): 87–94.
Sabattini R.A., Boschetti G.N., Quintero C., Hernandez J.P., Befani R., Sabattini I.A., Cian J.C., Sabattini J.A., Krüger A., Arbello P. 2013. Zonificación: diagnóstico estado de los montes nativos y tipo de suelos. Estancia El Carayá. Oro Verde, Argentina: Facultad de Ciencias Agropecuarias. 40 p.
Sabattini R.A., Anglada M.M., Sabattini I.A., Cian J.C., Bacigalupo M., Krüger A., Sabattini J.A., Heinze D., Lindt M. 2014. Recuperación de un monte nativo degradado con la utilización de la limpieza quimica aérea en la Estancia El Caraya: Lotes 4 Sureste A (2012–2013) y B (2013–2014), y Lote 51 (2013–2014). Argentina: Facultad de Ciencias Agropecuarias, UNER. 48 p.
Sabattini R.A., Sabattini J.A., Boschetti N.G., Quintero C., Cian J.C., Befani R., Hernandez J.P., Urteaga Omar F., Sabattini I.A. 2019. Caracterización de la vegetación, unidades ambientales, y asociaciones edáficas. In: J.A. Sabattini, R.A. Sabattini (Eds.): Área natural protegida reserva de usos múltiples Estancia «El Carayá»: Producción, conservación y recuperación de ecosistemas en el Espinal Argentino. Rafaela, Argentina. P. 51–94.
SADSN (Secretaría de Ambiente y Desarrollo Sustentable de la Nación). 2015. Tercera comunicación nacional de la República Argentina a la Convención Maro de las Naciones Unidas sobre el Cambio Climatico. Available from: https://unfccc.int/resource/docs/natc/argnc3s.pdf
Sione S., Wilson M.G., Andrade H.J., Rosenberger L.J., Sasal M.C., Gabioud E.A. 2018. Carbono almacenado en la biomasa aérea de los bosques nativos del espinal (Argentina). In: Resumenes Comunicacionales Orales VIII Congreso sobre uso y manejo del suelo. Coruña, España. 32 p.
Sione S.M.J., Andrade-Castañeda H.J., Ledesma S.G., Rosenberger L.J., Oszust J.D., Wilson M.G. 2019. Aerial biomass allometric models for Prosopis affinis Spreng. in native Espinal forests of Argentina. Revista Brasileira de Engenharia Agrícola e Ambiental 23(6): 467–473. DOI: 10.1590/1807-1929/agriambi.v23n6p467-473
Soares C.P.B., Oliveira M.L.R.d. 2002. Equations for estimating the amount of carbon in the aerial parts of eucalypt trees in Viçosa, MG, Brazil. Revista Árvore 26(5): 533–539. DOI: 10.1590/S0100-67622002000500002
Soares-Filho B.S., Nepstad D.C., Curran L.M., Cerqueira G.C., Garcia R.A., Ramos C.A., Voll E., McDonald A., Lefebvre P., Schlesinger P. 2006. Modelling conservation in the Amazon basin. Nature 440(7083): 520–523. DOI: 10.1038/nature04389
Soares-Filho B., Moutinho P., Nepstad D., Anderson A., Rodrigues H., Garcia R., Dietzsch L., Merry F., Bowman M., Hissa L., Silvestrini R., Maretti C. 2010. Role of Brazilian Amazon protected areas in climate change mitigation. Proceedings of the National Academy of Sciences of the United States of America 107(24): 10821–10826. DOI: 10.1073/pnas.0913048107
Soil Mapping Plan. 1986. Carta de Suelos de la República Argentina. Departamento Feliciano, Provincia de Entre Ríos. Convenio INTA Gobierno de Entre Ríos. 72 p.
Taiz L., Zeiger E. 1998. Plant Physiology. Sunderland, Massachussets: Sinauer Associates Inc. 674 p.
UNEP-WCMC and IUCN. 2016. Protected Planet Report 2016: How protected areas contribute to achieving global targets for biodiversity. Cambridge, UK; Gland, Switzerland: Centre UWCM. 73 p.
Urdapilleta A. 2018. Cuantificación del carbono almacenado en la biomasa arbórea en un predio ubicado en la región del Parque Chaqueño húmedo, Argentina. Ingeniero Forestal Thesis. Argentina: Universidad Nacional de la Plata. 63 p.
Vega J., Martiarena R. 2010. Carbono almacenado en la biomasa aérea de plantaciones de araucaria (Araucaria angustifolia Bert. O. Ktze.). Revista Ciencia y Tecnologia 13(1): 79–86.
Venter O., Sanderson E.W., Magrach A., Allan J.R., Beher J., Jones K.R., Possingham H.P., Laurance W.F., Wood P., Fekete B.M., Levy M.A., Watson J.E.M. 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications 7: 12558. DOI: 10.1038/ncomms12558
Vicente G., Engle P., Jaubertie C. 2011. Valorización económica del carbono secuestrado en el distrito del Ñandubay, Entre Ríos, como herramienta para un ordenamiento territorial. In: P. Laterra, E. Jobbagy, J.M. Paruelo (Eds.): Valoración de Servicios Ecosistémicos: Conceptos, herramientas y aplicaciones para el ordenamiento territorial. Argentina: Ediciones INTA. P. 581–599.
Watson J.E.M., Evans T., Venter O., Williams B., Tulloch A., Stewart C., Thompson I., Ray J.C., Murray K., Salazar A., McAlpine C., Potapov P., Walston J., Robinson J.G., Painter M., Wilkie D., Filardi C., Laurance W.F., Houghton R.A., Maxwell S., Grantham H., Samper C., Wang S., Laestadius L., Runting R.K., Silva-Chávez G.A., Ervin J., Lindenmayer D. 2018. The exceptional value of intact forest ecosystems. Nature Ecology and Evolution 2(4): 599–610. DOI: 10.1038/s41559-018-0490-x
Whitehead D., Baisden T., Beare M., Campbell D., Curtin D., Davis M., Hedley C., Hedley M., Jones H., Kelliher F., Saggar S., Shipper L. 2012. Review of soil carbon measurement methodologies and technologies, including nature and intensity of sampling, their uncertainties and costs. Technical Paper by Landcare Research No.2012/36. Ministry for Primary Industries. 92 p.
Wilson M.G. 2017. Manual de indicadores de calidad del suelo para las ecorregiones de Argentina. Entre Ríos: Ediciones INTA. 294 p.
Wilson M.G., Sabattini R. 2001. Sustainability of native forest agroecosystems in Entre Ríos, Argentina: review and conceptual model. Revista Facultad de Agronomia 21(2): 117–128.