Article

Article name EFFECT OF POPULATION DENSITY ON NUMBER OF LEUKOCYTES IN DOMESTIC CATS
Authors

Sergey V. Naidenko, Dr.Sc., Professor of RAS, Chief Researcher of the A.N. Severtsov Institute of Ecology and Evolution of RAS (119071, Russia, Moscow, Leninsky pr. 33); e-mail: snaidenko@mail.ru
Polina S. Klyuchnikova, Leading Engineer of the A.N. Severtsov Institute of Ecology and Evolution of RAS (119071, Russia, Moscow, Leninsky pr. 33); e-mail: klyuchnikova.polia@yandex.ru
Vadim E. Kirilyuk, PhD, Researcher of the A.N. Severtsov Institute of Ecology and Evolution of RAS (119071, Russia, Moscow, Leninsky pr. 33); Leading Researcher of the Daursky State Nature Biosphere Reserve (674480, Trans-Baikalsky Krai, Ononskiy district, Nizhniy Tsasuchei, Komsomolskaya str., 76); e-mail: vkiriliuk@bk.ru
Galina S. Alekseeva, Ph.D., Researcher of the A.N. Severtsov Institute of Ecology and Evolution of RAS (119071, Russia, Moscow, Leninsky pr. 33); e-mail: gailygirl@mail.ru

Reference to article

Naidenko S.V., Klyuchnikova P.S., Kirilyuk V.E., Alekseeva G.S. 2020. Effect of population density on number of leukocytes in domestic cats. Nature Conservation Research 5(2): 89–96. https://dx.doi.org/10.24189/ncr.2020.021

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2020.021
Abstract

Leukocytes (white blood cells) are an important part of the mammalian immune system preventing the invasion and colonisation by different pathogens. Many factors may affect the number of leukocytes in mammals, including the population density. The population density in the same species of felines may differ 100–300 times and the aim of this study was to estimate an effect of this factor on the leukocytes number and the ratio for two groups of domestic cats (Felis catus) with different population densities. We sampled 47 cats in the surroundings of Daursky State Nature Reserve, counted the number of leukocytes with a microscope immediately upon sampling and the leukocytes formula in the blood smears later in the laboratory. The population density of cats in the village and at herdsman stations differs approximately by 330 times. Domestic cats in the village (with a denser population) had a higher number of leukocytes and neutrophils, but the same number of lymphocytes and neutrophils/lymphocytes ratio. The number of eosinophils was also higher in village cats. Presumably, the higher number of leukocytes and neutrophils in a cat population with higher density is determined by the higher exchange rate of pathogens/symbionts between cats in the village than at the herdsman stations. These results may give some insight into understanding the changes in wild feline populations at different densities.

Keywords

eosinophils, Felidae, immunity, mating system, neutrophils, white blood cell

Artice information

Received: 30.08.2019. Revised: 20.04.2020. Accepted: 22.04.2020.

The full text of the article
References

Bain B.J. 1996. Ethnic and sex differences in the total and differential white cell count and platelet count. Journal of Clinical Pathology 49(8): 664–666. DOI: 10.1136/jcp.49.8.664
Bauer R.N., Diaz-Sanchez D., Jaspers I. 2012. Effects of air pollutants on innate immunity: The role of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors. Journal of Allergy and Clinical Immunology 129(1): 14–24. DOI: 10.1016/j.jaci.2011.11.004
Bazhibina E.B., Korobov A.V., Sereda S.V., Saprykin V.P. 2005. Methodological foundations of estimation of clinic-morphological blood values of domestic animals. Moscow: Akvarium-Print. 128 p. [In Russian]
Becker D.J. Czirják G.Á., Volokhov D.V., Bentz A.B., Carrera J.E., Camus M.S., Navara K.J., Chizhikov V.E., Fenton M.B., Simmons N.B., Recuenco S.E., Gilbert A.T., Altizer S., Streicker D.G. 2018. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 373(1745): 20170089. DOI: 10.1098/rstb.2017.0089
Charles L.E., Fekedulegn D., McCall T., Burchfiel C.M., Andrew M.E., Violanti J.M. 2007. Obesity, white blood cell counts, and platelet counts among police officers. Obesity 15(11): 2846–2854. DOI: 10.1038/oby.2007.338
Dale D.C., Boxer L., Liles W.C. 2008. The phagocytes: neutrophils and monocytes. Blood 112(4): 935–945. DOI: 10.1182/blood-2007-12-077917
Davis A.K., Maney D.L., Maerz J.C. 2008. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology 22(5): 760–772. DOI: 10.1111/j.1365_2435.2008.01467.x
Dixon J.B., O'Brien P.E. 2006. Obesity and the white blood cell count: changes with sustained weight loss. Obesity Surgery 16(3): 251–257. DOI: 10.1381/096089206776116453
Eaton R.L. 1970. Group interaction, spacing and territoriality in cheetahs. Zeitschrift für Tierpsychologie 27(4): 481–491. DOI: 10.1111/j.1439-0310.1970.tb01882.x
Game E.T., Meijaard E., Sheil D., McDonald-Madden E. 2014. Conservation in a wicked complex world; challenges and solutions. Conservation Letters 7(3): 271–277. DOI: 10.1111/conl.12050
Gilbert-Diamond D., Baylin A., Mora-Plazas M., Villamor E. 2012. Chronic inflammation is associated with overweight in Colombian school children. Nutrition Metabolism and Cardiovascular Diseases 22(3): 244–251. DOI: 10.1016/j.numecd.2010.06.001
Grinell J., Packer C., Pusey A.E. 1995. Cooperation in male lions: kinship, reciprocity or mutualism? Animal Behaviour 49(1): 95–105. DOI: 10.1016/0003-3472(95)80157-X
Freyberg Z., Harvill E.T. 2017. Pathogen manipulation of host metabolism: a common strategy for immune evasion. PLoS Pathogens 13(12): e1006669. DOI: 10.1371/journal. ppat.1006669
Hernandez-Blanco J.A., Naidenko S.V., Chistopolova M.D., Lukarevskiy V.S., Kostyrya A., Rybin A., Sorokin P.A., Litvinov M.N., Kotlyar A.K., Miquielle D.G., Rozhnov V.V. 2015. Social structure and space use of Amur tigers (Panthera tigris altaica) in Southern Russian Far East based on GPS telemetry data. Integrative Zoology 10(4): 365–375. DOI: 10.1111/1749-4877.12140
Ishida Y., Yahara T., Kasuya E., Yamane A. 2001. Female control of paternity during copulation: inbreeding avoidance in feral cats. Behaviour 138(2): 235–250. DOI: 10.1163/15685390151074401
Kumar V., Sharma A. 2010. Neutrophils: Cinderella of innate immune system. International Immunopharmacology 10(11): 1325–1234. DOI: 10.1016/j.intimp.2010.08.012
Kuznetsova E.V., Feoktistova N.Y., Naidenko S.V., Surov A.V., Tikhonova N.B., Kozlovskii J.E. 2016. Seasonal changes in blood cells and biochemical parameters in the Mongolian hamster (Allocricetulus curtatus). Biology Bulletin 43(4): 344–349. DOI: 10.1134/S1062359016040087
Laflamme D.P. 1997. Development and validation of a body condition score system for cats: a clinical tool. Feline Practice 25(5/6): 13–18.
LaRosa D.F., Orange J.S. 2008. 1. Lymphocytes. Journal of Allergy and Clinical Immunology 121(2): 364–369. DOI: 10.1016/j.jaci.2007.06.016
Lazutkin A.N., Yamborko A.V., Kiselev S.V. 2016. Energy and immune parameters of northern red-backed voles (Clethrionomys rutilus) at different population densities in the Kolyma River Basin. Russian Journal of Ecology 47(6): 562–567. DOI: 10.1134/S1067413616060102
Liberg O., Sandell M. 1988. Spatial organization and reproductive tactics in the domestic cat and other feuds. In: D.C. Turner, P. Bateson (Eds.): The domestic cat: the biology of its behaviour. Cambridge: Cambridge University Press. P. 83–98.
Lochmiller R.L., Vestey M.R., McMurry S.T. 1993. Selected immune responses of adult cotton rats (Sigmodon hispidus) to dietary restriction. Comparative Biochemistry and Physiology Part A: Physiology 104(3): 593–599. DOI: 10.1016/0300-9629(93)90470-o
Marone G., Borriello F., Varricchi G., Genovese A., Granata F. 2014. Basophils: Historical reflections and perspectives. In: C.R. Bergmann, J. King (Eds.): History of Allergy. Chemical Immunology Allergy. Vol. 100. Basel: Karger. P. 172–192. DOI: 10.1159/0003s8734
Naidenko S.V., Erofeeva M.N. 2004. Reproduction of the Eurasian lynx, Lynx lynx (Felidae, Carnivora), and the traits of female reproductive strategy. Zoologicheskii Zhurnal 83(2): 261–269. [In Russian]
Naidenko S.V., Hupe K. 2002. Seasonal changes in home range use in feral tomcats in Solling, central Germany. Zoologicheskii Zhurnal 81(11): 1371–1381. [In Russian]
Naidenko S.V., Ivanov E.A., Lukareskii V.S., Hernandez-Blanco J.A., Sorokin P.A., Litvinov M.N., Kotlyar A.K., Rozhnov V.V. 2011. Activity of the hypothalamo-pituitary-adrenals axis in the Siberian tiger (Panthera tigris altaica) in captivity and in the wild, and its dynamics throughout the year. Biology Bulletin 38: 301–305. DOI: 10.1134/S1062359011030095
Naidenko S.V., Pavlova E.V., Kirilyuk V.E. 2014. Detection of seasonal weight loss and a serologic survey of potential pathogens in wild Pallas' cats (Felis [Otocolobus] manul) of the Daurian Steppe, Russia. Journal of Wildlife Diseases 50(2): 188–194. DOI: 10.7589/2013-03-068
Naidenko S.V., Berezhnoi M.A., Kumar V., Umapathy G. 2019a. Comparison of tigers' fecal glucocorticoids level in two extreme habitats. PLoS ONE 14(4): e0214447. DOI: 10.1371/ journal.pone.0214447
Naidenko S.V., Erofeeva M.N., Demina T.S., Alekseicheva I.A., Pavlova E.V. 2019b. Comparative estimation of some immune parameters in three felid species. Russian Journal of Theriology 18(1): 1–11. DOI: 10.15298/rusjtheriol.18.1.01
Narasimen R.K., Kumar A.M., Jayam P.P.C., Chinnaiyan S., Nagarathinam M., Desai A.A. 2013. Status of Tigers, Co-Predators and Prey in the Wayanad Wildlife Sanctuary. Kerala, India. 60 p.
Novikov E.A., Mak V.V., Panov V.B., Moshkin M.P. 2010. A humoral immune response to non-replicated antigens and infection of red voles (Clethrionomys rutilus, Rodentia, Cricetidae) with taiga tick (Ixodes persulcatus, Acarina, Ixodidae). Zoologicheskii Zhurnal 89(1): 106–114. [In Russian]
Novikov E., Kondratyuk E., Petrovski D., Krivopalov A., Moshkin M. 2015. Effects of parasites and antigenic challenge on metabolic rates and thermoregulation in northern red-backed voles (Myodes rutilus). Parasitology Research 114(12): 4479–4486. DOI: 10.1007/s00436-015-4691-9
Nunn C.L., Altizer S.M. 2004. Sexual selection, behaviour and sexually transmitted diseases. In: P.M. Kappeler, C.P. Schaik (Eds.): Sexual selection in primates: new and comparative perspectives. Cambridge: Cambridge University Press. P. 117–130.
Nunn C.L., Gittleman J.L., Antonovics J. 2004. A comparative study of white blood cell counts and disease risk in carnivores. Proceedings. Biological Sciences 270(1513): 347–356. DOI: 10.1098/rspb.2002.2249
Nunn C.L., Lindenfors P., Pursall E.R., Rolff J. 2009. On sexual dimorphism in immune function. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 364(1513): 61–69. DOI: 10.1098/rstb.2008.0148
Obanda V., Omondi G.P., Chiyo P.I. 2014. The influence of body mass index, age and sex on inflammatory disease risk in semi-captive chimpanzees. PLoS ONE 9(8): e104602. DOI: 10.1371/journal.pone.0104602
Palacious R., Sugawara I. 1982. Hydrocortisone abrogates proliferation of T cells in autologous mixed lymphocyte reaction by rendering the interleukin-2, producer T cells unresponsive to interleukin-1 and unable to synthesize the T-cell growth factor. Scandinavian Journal of Immunology 15(1): 25–31. DOI: 10.1111/j.1365-3083.1982.tb00618.x
Pavlova E.V., Kirilyuk V.E., Naidenko S.V. 2015. Patterns of seroprevalence of feline viruses among domestic cats (Felis catus) and Pallas' cats (Otocolobus manul) in Daursky Reserve, Russia. Canadian Journal of Zoology 93(11): 849–855. DOI: 10.1139/cjz-2015-0006
Pavlova E.V., Kirilyuk V.E., Naidenko S.V. 2016. Occurrence pattern of influenza A virus, Coxiella burnetii, Toxoplasma gondii, and Trichinella sp. in the Pallas cat and domestic cat and their potential prey under arid climate conditions. Arid Ecosystems 6(4): 277–283. DOI: 10.1134/S2079096116040089
Pavlova E.V., Alekseeva G.S., Erofeeva M.N., Vasilieva N.A., Tchabovsky A.V., Naidenko S.V. 2018. The method matters: The effect of handling time on cortisol level and blood parameters in wild cats. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 329(3): 112–119. DOI: 10.1002/jez.2191
Saino N., Canova L., Fasola M., Martinelli R. 2000. Reproduction and population density affect humoral immunity in bank voles under field experimental conditions. Oecologia 124: 358–366. DOI: 10.1007/s004420000395
Say L., Devillard S., Natoli E., Pontier D. 2002. The mating system of feral cats (Felis catus L.) in a subAntarctic environment. Polar Biology 25(11): 838–842. DOI: 10.1007/s00300-002-0427-2
Say L., Pontier D., Natoli E. 1999. High variation in multiple paternity of domestic cats (Felis catus L.) in relation to environmental conditions. Proceedings. Biological Sciences 266(1433): 2071–2074. DOI: 10.1098/rspb.1999.0889
Schneeberger K., Czirják G.A., Voigt C.C. 2013. Measures of the constitutive immune system are linked to diet and roosting habits of Neotropical bats. PLoS ONE 8(1): e54023. DOI: 10.1371/journal.pone.0054023
Schneeberger K., Courtiol A., Czirják G.A., Voigt C.C. 2014. Immune profile predicts survival and reflects senescence in a small, long-lived mammal, the greater sac-winged bat (Saccopteryx bilineata). PLoS ONE 9(9): e108268. DOI: 10.1371/journal.pone.0108268
Tarakhtii E.A., Davydova Yu.A., Kshnyasev I.A. 2007. Annual variation in hematological indices in a fluctuating population of bank vole (Clethrionomys glareolus). Biology Bulletin 34(6): 635–643. DOI: 10.1134/S1062359007060155
Tian J., Courtiol A., Schneeberger K., Greenwood A.D., Czirják G.A. 2017. Circulating white blood cell counts in captive and wild rodents are influenced by body mass rather than testes mass, a correlate of mating promiscuity. Functional Ecology 29(6): 823–829. DOI: 10.1111/1365-2435.12394
Vitkalova A.V., Shevtsova E.I. 2016. A complex approach to study the Amur leopard using camera traps in Protected Areas in the southwest of Primorsky Krai (Russian Far East). Nature Conservation Research 1(3): 53–58. DOI: 10.24189/ncr.2016.027
Volis S., Blecher M., Sapir Y. 2009. Complex ex situ in situ approach for conservation of endangered plant species and its application to Iris atrofusca of the Northern Negev. BioRisk 3: 137–160. DOI: 10.3897/biorisk.3.5
Webb R.E., Leslie Jr. D.M., Lochmiller R.L., Masters R.E. 2003. Immune function and hematology of male cotton rats (Sigmodon hispidus) in response to food supplementation and methionine. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 136(3): 577–589. DOI: 10.1016/S1095-6433(03)00209-5
Wen T., Rothenberg M.E. 2016. The regulatory function of eosinophils. Microbiology Spectrum 4(5): MCHD-0020-2015. DOI: 10.1128/microbiolspec.MCHD-0020-2015
Xu D.L., Wang D.H. 2010. Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 155(1): 25–33. DOI: 10.1016/j.cbpa.2009.09.003
Zaldivar F., McMurray R.G., Nemet D., Galassetti P., Mills P.J., Cooper D.M. 2006. Body fat and circulating leukocytes in children. International Journal of Obesity 30(6): 906–911. DOI: 10.1038/sj.ijo.0803227