Ivan Yu. Rusin, PhD Student of the Department of Biology of the Lomonosov Moscow State University (Vorobievy Gory, 12/1, Moscow, 119234, Russia); e-mail:
Ilya A. Volodin, Leading Researcher of the Department of Biology of the Lomonosov Moscow State University (Vorobievy Gory, 12/1, Moscow, 119234, Russia); e-mail:
Rimma S. Andronova, Deputy Director on Science of the Federal State Institution «Zapovednoe Priamurye» (Kalinina street, 27b, Khabarovsk, 680000, Russia); e-mail:
Elena V. Volodina, Researcher of the Department of Science in the Moscow Zoo (Bolshaya Gruzinskaya street, 1, Moscow, 123242, Russia); e-mail:

Reference to article

Rusin I.Yu., Volodin I.A., Andronova R.S., Volodina E.V. 2019. Passive acoustic monitoring of roaring activity in male Wapiti Cervus elaphus xanthopygus in Far East of Russia: effects of recording site, temperature and time of day. Nature Conservation Research 4(3): 34–44.

Section Research articles

Passive acoustic monitoring is an actual tool for population monitoring at conservation and tourist areas. This study provides detailed knowledge of roaring activity of male Far-East wapiti (Cervus elaphus xanthopygus) in the rut period of 2017 at three sites of most active rut at the 453.4 km2 territory of the State Nature Reserve «Bolshekhekhtsirsky» (Far East of Russia). Rutting calls were recorded for 5 min/h throughout the 58-day rut period by using three automated recording devices, one in each site, with simultaneous registration of temperature, once per hour. In total, we recorded 3474 rutting calls (1538, 1159 and 777 calls in the three sites respectively). In each site, the roaring activity (calculated as the mean daily number of calls/h) demonstrated a similar dynamic of three rut phases: start phase, active phase and fading phase. Although the roaring activity displayed a positive correlation between sites, the actual values of the mean number of calls/h differed between sites. This finding indicates the different use of the three sites by males during the rut. At any site, the roaring activity was related to time of day (hourly); it was the highest between 03:00 a.m. and 06:00 a.m. and nearly lacked between 10:00 a.m. and 6:00 p.m. At any site, the number of calls/h increased steadily from 8:00 p.m. to 03:00 a.m. to a maximum value and then rapidly decreased from 06:00 to 09:00 a.m. to a minimum value. The effect of temperature on the daily and hourly roaring activity was weaker than the effect of time of day. We discuss the results with similar data of another protected Russian population of Far-East wapiti inhabiting the State Nature Reserve «Ussuriysky».


diurnal and seasonal dynamic, non-invasive management, Protected Area, red deer, rutting calls, ungulate

Artice information

Received: 16.01.2019. Revised: 21.03.2019. Accepted: 05.05.2019.

The full text of the article

Bobek B., Perzanowski K., Zielinski J. 1986. Red deer population census in mountains: testing of an alternative method. Acta Theriologica 31: 424–431. DOI: 10.4098/AT.arch.86-39
Bocci A., Telford M., Laiolo P. 2013. Determinants of the acoustic behaviour of red deer during breeding in a wild alpine population, and implications for species survey. Ethology Ecology and Evolution 25(1): 52–69. DOI: 10.1080/03949370.2012.705331
Briefer E., Vannoni E., McElligott A.G. 2010. Quality prevails over identity in the sexually selected vocalisations of an ageing mammal. BMC Biology 8: 35. DOI: 10.1186/1741-7007-8-35
Burham R.E., Palm R.S, Duffus D.A., Mouy X., Riera A. 2016. The combined use of visual and acoustic data collection techniques for winter killer whale (Orcinus orca) observations. Global Ecology and Conservation 8: 24–30. DOI: 10.1016/j.gecco.2016.08.001
Calabrese J.M., Moss Clay A., Estes R.D., Thompson K.V., Monfort S.L. 2018. Male rutting calls synchronize reproduction in Serengeti wildebeest. Scientific Reports 8(1): 10202. DOI: 10.1038/s41598-018-28307-y
Carranza J., Alvarez F., Redondo T. 1990. Territoriality as a mating strategy in Red deer. Animal Behaviour 40(1): 79–88. DOI: 10.1016/S0003-3472(05)80667-0
Caruso F., Alonge G., Bellia G., De Domenico E., Grammauta R., Larosa G., Mazzola S., Riccobene G., Pavan G., Papale E., Pellegrino C., Pulvirenti S., Sciacca V., Simeone F., Speziale F., Viola S., Buscaino G. 2017. Long-term monitoring of dolphin biosonar activity in deep pelagic waters of the Mediterranean Sea. Scientific Reports 7: 4321. DOI: 10.1038/s41598-017-04608-6
Charlton B.D., Reby D., McComb K. 2007. Female red deer prefer the roars of larger males. Biology Letters 3(4): 382–385. DOI: 10.1098/rsbl.2007.0244
Clutton-Brock T.H., Albon S.D. 1979. The roaring of red deer and the evolution of honest advertising. Behaviour 69(3): 145–170. DOI: 10.1163/156853979X00449
Della Libera M., Passilongo D., Reby D. 2015. The acoustics of male rutting roars in the endangered population of Mesola red deer Cervus elaphus italicus. Mammalian Biology 80: 395–400. DOI: 10.1016/j.mambio.2015.05.001
Desjonquères C., Rybak F., Ulloa J.S., Kempf A., Hen A.B., Sueur J. 2018. Monitoring the acoustic activity of an aquatic insect population in relation to temperature, vegetation and noise. Freshwater Biology. DOI: 10.1111/fwb.13171
Dillon W.R., Goldstein M. 1984. Multivariate analysis: methods and applications. New York: Wiley. 608 p.
Douhard M., Bonenfant C., Gaillard J.-M., Hamann J.-L., Jacques M.G. 2013. Roaring counts are not suitable for the monitoring of red deer Cervus elaphus population abundance. Wildlife Biology 19(1): 94–101. DOI: 10.2981/12-037
Enari H., Enari H., Okuda K., Yoshita M., Kuno T., Okuda K. 2017. Feasibility assessment of active and passive acoustic monitoring of sika deer populations. Ecological Indicators 79: 155–162. DOI: 10.1016/j.ecolind.2017.04.004
Farina A., Gage S.H. (Eds.). 2017. Ecoacoustics. The ecological role of sounds. Oxford, UK: Wiley. 352 p.
Ferreira L.M., Oliveira E.G., Lopes L.C., Brito M.R., Baumgarten J., Rodrigues F.H., Renata S. Sousa-Lima R.S. 2018. What do insects, anurans, birds, and mammals have to say about soundscape indices in a tropical savanna. Journal of Ecoacoustics 2: PVH6YZ. DOI: 10.22261/JEA.PVH6YZ
Frey R., Volodin I., Volodina E., Carranza J., Torres-Porras J. 2012. Vocal anatomy, tongue protrusion behaviour and the acoustics of rutting roars in free-ranging Iberian red deer stags (Cervus elaphus hispanicus). Journal of Anatomy 220(3): 271–292. DOI: 10.1111/j.1469-7580.2011.01467.x
Gasc A., Francomano D., Dunning J.B., Pijanowski B.C. 2017. Future directions for soundscape ecology: The importance of ornithological contributions. Auk 134(1): 215–228. DOI: 10.1642/AUK-16-124.1
Golosova O.S., Volodin I.A., Isaeva I.L., Volodina E.V. 2017. Effects of free-ranging, semi-captive and captive management on the acoustics of male rutting calls in Siberian wapiti Cervus elaphus sibiricus. Mammal Research 62(4): 387–396. DOI: 10.1007/s13364-017-0322-4
Jeliazkov A., Bas Y., Kerbiriou C., Julien J.-F., Penone C., Le Viol I. 2016. Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets. Global Ecology and Conservation 6: 208–218. DOI: 10.1016/j.gecco.2016.02.008
Kalan A.K., Piel A.K., Mundry R., Wittig R.M., Boesch C., Kühl H.S. 2016. Passive acoustic monitoring reveals group ranging and territory use: a case study of wild chimpanzees (Pan troglodytes). Frontiers in Zoology 13(1): 34. DOI: 10.1186/s12983-016-0167-8
Klenova A.V., Volodin I.A., Volodina E.V. 2009. Examination of pair-duet stability to promote long-term monitoring of the endangered red-crowned crane (Grus japonensis). Journal of Ethology 27(3): 401–406. DOI: 10.1007/s10164-008-0133-9
Kuznetsova M.V., Danilkin A.A., Kholodova M.V. 2012. Phylogeography of red deer (Cervus elaphus): Analysis of mtDNA cytochrome b polymorphism. Biology Bulletin 39(4): 323–330. DOI: 10.1134/S1062359012040048
Laiolo P., Tella J.L. 2006. Landscape bioacoustics allow detection of the effects of habitat patchiness on population structure. Ecology 87(5): 1203–1214. DOI: 10.1890/0012-9658
Chronicle of Nature. 2017. Number of mammals. In: Chronicle of Nature of State Nature Reserve «Bolshekhekhtsirsky» 48: 180–184. [In Russian]
Lillis A., Caruso F., Mooney T.A., Llopiz J., Bohnenstiehl D., Eggleston D.B. 2018. Drifting hydrophones as an ecologically meaningful approach to underwater soundscape measurement in coastal benthic habitats. Journal of Ecoacoustics 2: STBDH1. DOI: 10.22261/JEA.STBDH1
Lissovsky A.A., Sheftel B.I., Stakheev V.V., Ermakov O.A., Smirnov D.G., Glazov D.M., Strelnikov D.P., Ekonomov A.V., Titov S.V., Obolenskaya E.V., Kozlov Y.A., Saveljev A.P. 2018. Creating an integrated information system for the analysis of mammalian fauna in the Russian Federation and the preliminary results of this information system. Russian Journal of Theriology 17(2): 85–90. DOI: 10.15298/rusjtheriol.17.2.04
Litvinov M.N. 2008. Peculiarities of ruminant fauna development at the Nature Reserve «Ussuriysky». Animal and Plant World of Far East 11: 127–131. [In Russian]
Llusia D., Marquez R., Bowker R. 2011. Terrestrial sound monitoring systems, a methodology for quantitative calibration. Bioacoustics 20(3): 277–286. DOI: 10.1080/09524622.2011.9753651
Marques T.A., Thomas L., Martin S.W., Mellinger D.K., Ward J.A., Moretti D.J., Harris D., Tyack P.L. 2013. Estimating animal population density using passive acoustics. Biological Review 88(2): 287–309. DOI: 10.1111/brv.12001
McComb K. 1987. Roaring by red deer stags advances the date of oestrus in hinds. Nature 330(6149): 648–649. DOI: 10.1038/330648a0
Nelson D.E., Alkon P.U., Krausman P.R. 2005. Using acoustic telemetry to monitor foraging by penned mule deer. Wildlife Society Bulletin 33(2): 624–632. DOI: 10.2307/3785090
Obrist M.K., Pavan G., Sueur J., Riede K., Llusia D., Marquez R. 2010. Bioacoustics approaches in biodiversity inventories. In: J. Eymann, J. Degreef, C. Häuser, J.C. Monje, Y. Samyn, D. VandenSpiegel (Eds.): Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories and Monitoring. Vol. 8(1). Brussels: Abc Taxa. P. 68–99.
Pepin D., Cargnelutti B., Gonzalez G., Joachim J., Reby D. 2001. Diurnal and seasonal variations of roaring activity of farmed red deer stags. Applied Animal Behaviour Science 74(3): 233–239. DOI: 10.1016/S0168-1591(01)00172-1
Pfeffer S.E., Spitzer R, Allen M.A., Hofmeester T.R., Ericsson G., Widemo F., Singh N.J., Cromsigt J.P.G.M. 2017. Pictures or pellets? Comparing camera trapping and dung counts as methods for estimating population densities of ungulates. Remote Sensing in Ecology and Conservation 4: 173–183. DOI: 10.1002/rse2.67
Reby D., McComb K. 2003. Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour 65(3): 519–530. DOI: 10.1006/anbe.2003.2078
Setyawan E., Sianipar A.B., Erdmann M.V., Fischer A.M., Haddy J.A., Beale C.S., Lewis S.A., Mambrasar R. 2018. Site fidelity and movement patterns of reef manta rays (Mobula alfredi: Mobulidae) using passive acoustic telemetry in Northern Raja Ampat, Indonesia. Nature Conservation Research 3(4): 17–31. DOI: 10.24189/ncr.2018.043
Smith-Flueck J.M., Flueck W.T. 2006. Defense of territories by rutting red deer stags, Cervus elaphus, in Patagonia, Argentina. In: L. Bartoš, A. Dušek, R. Kotrba, J. Bartošová-Víchová (Eds.): Advances in Deer Biology. Praha: Research Institute of Animal Production. P. 174–178.
Sugai L.S.M., Silva T.S.F., Ribeiro J.W. JR., Llusia D. 2018. Terrestrial passive acoustic monitoring: review and perspectives. BioScience 69(1): 15–25. DOI:10.1093/biosci/biy147
Suter S.M., Giordano M., Nietlispach S., Apollonio M., Passilongo D. 2017. Non-invasive acoustic detection of wolves. Bioacoustics 26: 237–248. DOI: 10.1080/09524622.2016.1260052
Towsey M., Znidersic E., Broken-Brow J., Indraswari K., Watson D. M., Phillips Y., Truskinger A., Roe P. 2018. Long-duration, false-colour spectrograms for detecting species in large audio datasets. Journal of Ecoacoustics 2: IUSWUI. DOI: 10.22261/JEA.IUSWUI
Volodin I.A., Klenova A.V., Volodina E.V. 2008. Modelling bioacoustical monitoring through years with captive population of the red-breasted goose. Casarca 11(1): 22–46.
Volodin I.A., Volodina E.V., Frey R., Maymanakova I.L. 2013. Vocal activity and acoustic structure of the rutting calls of Siberian wapiti (Cervus elaphus sibiricus) and their imitation with a hunting luring instrument. Russian Journal of Theriology 12(2): 99–106. DOI: 10.15298/rusjtheriol.12D.2.06
Volodin I.A., Matrosova V.A., Volodina E.V., Garcia A.J., Gallego L., Márquez R., Llusia D., Beltrán J.F., Landete-Castillejos T. 2015a. Sex and age-class differences in calls of Iberian red deer during the rut: reversed sex dimorphism of pitch and contrasting roars from farmed and wild stags. Acta Ethologica 18(1): 19–29. DOI: 10.1007/s10211-013-0179-8
Volodin I.A., Volodina E.V., Sibiryakova O.V., Naidenko S.V., Hernandez-Blanco J.A., Litvinov M.N., Rozhnov V.V. 2015b. Vocal activity and the acoustic structure of rutting calls in red deer in the Russian Far East. Doklady Biological Science 462(1): 144–147. DOI: 10.1134/S0012496615030114
Volodin I.A., Sibiryakova O.V., Volodina E.V. 2016a. Sex and age-class differences in calls of Siberian wapiti Cervus elaphus sibiricus. Mammalian Biology 81(1): 10–20. DOI: 10.1016/j.mambio.2015.09.002
Volodin I.A., Volodina E.V., Golosova O.S. 2016b. Automated monitoring of vocal rutting activity in red deer (Cervus elaphus). Russian Journal of Theriology 15(2): 91–99. DOI: 10.15298/rusjtheriol.15.2.03
Volodin I.A., Nahlik A., Tari T., Frey R., Volodina E.V. 2019. Rutting roars in native Pannonian red deer of Southern Hungary and the evidence of acoustic divergence of male sexual vocalization between Eastern and Western European red deer (Cervus elaphus). Mammalian Biology 94: 54–65. DOI: 10.1016/j.mambio.2018.10.009
Walcott C., Mager J.N., Piper W. 2006. Changing territories, changing tunes: male loons, Gavia immer, change their vocalizations when they change territories. Animal Behaviour 71(3): 673–683. DOI: 10.1016/j.anbehav.2005.07.011
Yen S.-C., Shieh B.-S., Wang Y.-T., Wang Y. 2013. Rutting vocalizations of Formosan sika deer Cervus nippon taiouanus – Acoustic structure, seasonal and diurnal variations, and individuality. Zoological Science 30(12): 1025–1031. DOI: 10.2108/zsj.30.1025