Article

Article name RECONSTRUCTION OF ARBOREAL VEGETATION DYNAMICS OF THE AREA OF MUSEUM-RESERVE KULIKOVO POLE IN THE MIDDLE AND LATE HOLOCENE
Authors

Elena Yu. Novenko, Dr. Sci, Leading Researcher of the Lomonosov Moscow State University (119991, Russian Federation, Moscow, Leninskie Gory, 1); Senior Researcher of the Institute of Geography RAS (119017, Russia, Moscow, Staromonetniy per., 29); e-mail: lenanov@mail.ru

Reference to article

Novenko E.Yu. 2017. Reconstruction of arboreal vegetation dynamics of the area of Museum-Reserve Kulikovo Pole in the middle and late Holocene. Nature Conservation Research 2(Suppl. 2): 66–76. https://dx.doi.org/10.24189/ncr.2017.034

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2017.034
Abstract

The paper presents reconstructions of vegetation and forest coverage dynamics in the area of the State Military-Historical and Natural Museum-Reserve «Kulikovo Pole» (Upper Don River basin) in the middle and late Holocene, based on modern and fossil pollen assemblages and remote sensing data (MODIS) using the «the Best Modern Analogue» technique for paleoecological studies. The data obtained showed that in the study area steppe vegetation was widespread in the period 7000–4500 cal. (calendar) years BP, forest coverage was 10–20%. Cooling and moistening of the climate around 4500 cal. years BP encouraged a shift of the forest-steppe boundary to the South; forest-steppe vegetation with the participation of pine and broad-leaved forests of Quercus, Tilia, Ulmus and Alnus occupied the Upper Don River basin. Meadow steppe plant communities persisted mostly on dry slopes and well-drained watersheds. The forest coverage increased to 30–40%, and around 2700 cal. years BP reached 45%. Significant changes in vegetation and reduction of the area covered by forest (to 15%) occurred at 2400 cal. years BP and were caused mainly by the anthropogenic factor. An extensive agriculture during the periods of human occupation resulted in a decrease in forest coverage, when the territory was abandoned forests recovered their areas.

Keywords

Holocene, Museum-Reserve «Kulikovo pole», pollen analysis, remote sensing data MODIS

Artice information

Received: 21.03.2017

The full text of the article
References

Aleksandrovskii A.L., Chichagova O.A. 1998. Radiocarbon age of Holocene paleosoils in the forest-steppe of Eastern Europe. Eurasian Soil Science 12: 1414–1422. [In Russian]
Archeological map of Russia. Tula region. Moscow: Institute of archeological RAS, 1999. 304 p.
Bartalev S.A., Egorov B.A., Ershov D.V., Isaev A.S., Lupyan E.A., Plotnikov D.E., Uvarov I.A. 2011. Satellite mapping of the vegetation cover of Russia by data of the spectroradiometer MODIS. Modern problems of remote sensing of the earth from space 8: 285–302. [In Russian]
Borisova O.K. 2008. Landscape and climatic changes in temperate latitude of Northern Hemisphere during the last 130 years. Moscow: GEOS, 2008. 264 p.
Bradshaw R.H.W., Webb T. 1985. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66: 721–737. DOI: 10.2307/1940533
Broström A., Gaillard M.-J., Ihse M., Odgaard B. 1998. Pollen-landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden – a first step towards quantification of vegetation openness in the past. Vegetation History and Archaeobotany 7: 189–201.
Broström A., Nielsen A.B., Gaillard M-J., Hjelle K., Mazier F., Binney H., Bunting J., Fyfe R., Meltsov V., Poska A., Rasanen S., Soepboer W., von Stedingk H., Sugita S. 2008. Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Vegetation History and Archaeobotany 17: 461–478. DOI: 10.1007/s00334-008-0148-8
Broström A., Sugita S., Gaillard M.-J. 2005. Estimating the spatial scale of pollen dispersal in the cultural landscape of southern Sweden. Holocene 15: 252–262. DOI: 10.1191/0959683605hl790rp
Caseldine C., Fyfe R. 2006. A modelling approach to locating and characterising elm ecline/landnam landscapes. Quaternary Science Reviews 25: 632–644. DOI: 10.1016/j.quascirev.2005.07.015
Clark R.L. 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen et Spores 24: 523–535.
Davis B.A.S., Zanon M., Collins P., Mauri A., Bakker J., Barboni D., Barthelmes A., Beaudouin C., Bjune A.E., Bozilova E. et al. 2013. The European modern pollen database (EMPD) project. Vegetation History and Archaeobotany 22(6): 521–530. DOI: 10.1007/s00334-012-0388-5
Ershov D.V. 2007. Methods of assessment of area covered by forests using satellite imaging MODIS of moderate spatial resolution. Modern problems of remote sensing of the earth from space 2: 217–225. [In Russian]
Furyaev V.V. 1986. Remote methods for assessing the condition and formation of taiga forests after a fire. In: Methods of remote research for the solution of natural history problems. Novosibirsk: Nauka. P. 147–159. [In Russian]
Gaillard M.-J., Sugita S., Bunting J., Dearing J., Bittmann F. 2008. Human impact on terrestrial ecosystems, pollen calibration and quantitative reconstruction of past land-cover. Vegetation History and Archaeobotany 17: 415–418. DOI: 10.1007/s00334-008-0170-x
Gonyanyi M.I., Aleksandrovskii A.L, Glasko M.P. 2007. Northern forest-steppe of the Upper Don River basin at the time of the Kulikovo Battle. Moscow: State Historical Museum-press. 208 p. [In Russian]
Grimm E.C. 1990. TILIA and TILIA GRAPH.PC spreadsheet and graphics software for pollen data. INQUA, Working Group on Data-Handling Methods Newsletter 4: 5–7.
Guiot J. 1990. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography, Palaeochmatology, Palaeoecology 80: 49–69.
Hansen M., DeFries R.S., Townshend J.R.G., Carroll M., Dimiceli C., Sohlberg R.A. 2003. Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm». Earth Interactions 7(10): 1–15. DOI: 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
Hellman S., Gaillard M.-J., Broström A., Sugita S. 2008. The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. Journal of Quaternary Science 23: 21–42. DOI: 10.1002/jqs.1126
Khotinsky N.A. 1988. The history and geography of Kulikovo pole. Moscow: Znanie. 64 p. [In Russian]
Khotinsky N.A. 1977. The Holocene of Northern Eurasia. Moscow: Nauka. 200 p. [In Russian]
Moore P.D., Webb J.A., Collinson M.E. 1991. Pollen Analysis. Oxford: Blackwell. 216 p.
Nakagawa T., Tarasov P., Kotoba N., Gotanda K., Yasuda Y. 2002. Quantitative pollen-based climate reconstruction in Japan: application to surface and late Quaternary spectra. Quaternary Science Reviews 21: 2099–2113. DOI: 10.1016/S0277-3791(02)00014-8
Novenko E.Yu., Chepurnaya A.A. 2015. Pollen and spores database from Russia and adjacent countries as a tool for palaeoecological studies. Bulletin of RAS, series geography 1: 119–128.
Novenko E.Yu., Glasko M.P., Burova O.V. 2009. Landscape-and-climate dynamics and land use in Late Holocene forest-steppe ecotone of East European Plain (upper Don River Basin case study). Quaternary International 203: 113–119.
Novenko E.Yu., Volkova E.M. Glasko M.P. Zuganova I.S. 2012. Palaeoecological evidence for the middle and late Holocene vegetation, climate and land use in the upper Don River basin (Russia). Vegetation History and Archaeobotany 21: 337–352. DOI: 10.1007/s00334-011-0339-6
Novenko E.Yu., Eremeeva A.P., Chepurnaya A.A. 2014. Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Vegetation History and Archaeobotany 23: 109–119. DOI: 10.1007/s00334-013-0418-y
Overpeck J.T., Webb T., Prentice I.C. 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23: 87–108. DOI: 10.1016/0033-5894(85)90074-2
Parnell A.C., Haslett J., Allen J.R.M., Buck C.E., Huntley B. 2008. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27: 1872–1885. DOI: 10.1016/j.quascirev.2008.07.009
Patterson W.A., Edwards K.J., Maguire D.J. 1987. Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews 6(1): 3–23. DOI: 10.1016/0277-3791(87)90012-6
Power M.J., Marlon J., Ortiz N., Bartlein P.J., Harrison S.P., Mayle F.E., Ballouche A., Bradshaw R. H W., Carcaillet C., Cordova C. et al. 2008. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics 30: 887–907. DOI: 10.1007/s00382-007-0334-x
Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M. et al. 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP. Radiocarbon 55: 1869–1887. DOI: 10.2458/azu_js_rc.55.16947
Stockmarr J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 615–621.
Sugita S. 2007. Theory of quantitative reconstruction of vegetation. I. Pollen from large sites REVEALS regional vegetation. Holocene 17: 229–241. DOI: 10.1177/0959683607075837
Sugita S., Gaillard M-J., Broström A. 1999. Landscape openness and pollen records: a simulation approach. Holocene 9: 409–421. DOI: 10.1191/095968399666429937
Tarasov P., Williams J.W., Andreev A., Nakagawa T., Bezrukova E., Herzschuh U., Igarashi Y., Müller S., Werner K., Zheng Z. 2007. Satellite- and pollen-based quantitative woody cover reconstructions for northern Asia: Verification and application to late-Quaternary pollen data. Earth and Planetary Science Letters 264: 284–298. DOI: 10.1016/j.epsl.2007.10.007
Velichko A.A. (Ed.). 2002. Dynamics of landscape components and inner sea basins of Northern Eurasia during the last 130 000 years. Moscow: GEOS. 232 p. [In Russian]
Velichko A.A. (Ed.). 2009. Paleoclimate and paleolandscapes of extratropic area of Northern Eurasia. The Late Pleistocene-Holocene. Moscow: GEOS. 120 p. [In Russian]