Article

Article name ENVIRONMENTAL FILTERING AND LOW TRAIT REDUNDANCY CHARACTERISE FISH ASSEMBLAGES IN LAKE MAMO, ORINOCO RIVER FLOODPLAIN, VENEZUELA
Authors

Gabriela Echevarría, PhD, Independent Researcher (Quito, Ecuador); iD ORCID: https://orcid.org/0000-0001-9353-6696; email: hydropsichidae@gmail.com
Nirson González, Main Researcher in the Estación de Investigaciones Hidrobiológicas de Guayana, Fundación La Salle de Ciencias Naturales (San Félix, UD 104, Bolívar, Venezuela, 8051); iD ORCID: https://orcid.org/0000-0002-7593-1024; email: nirsongonz@gmail.com

Reference to article

Echevarría G., González N. 2022. Environmental filtering and low trait redundancy characterise fish assemblages in Lake Mamo, Orinoco River floodplain, Venezuela. Nature Conservation Research 7(4): 31–41. https://dx.doi.org/10.24189/ncr.2022.034

Electronic Supplement. Species collected in Lake Mamo and their functional traits (Link).

Section Research articles
DOI https://dx.doi.org/10.24189/ncr.2022.034
Abstract

The study of assembly rules of fish communities in Neotropical floodplain lakes represents a major interest in community ecology due to their high species diversity and environmental variation, both spatial and temporal. In this study, assembly rules of freshwater fishes in Lake Mamo were explored. The main goals of this research were to analyse the seasonal variations in taxonomic and functional diversities of fishes in sandbanks and patches of aquatic macrophytes, in order to identify whether the fish assemblages are organised according to environmental filtering or limiting similarity, and to explore the relationships between taxonomic and functional diversity to determine if fish assemblages are either functionally redundant or complementary. In both mesohabitats, fishes were collected using seine nets during four hydrological seasons corresponding to low waters, rising waters, high waters and falling waters. Taxonomic and functional structure of fish assemblages in each habitat and across hydrological seasons was examined through multidimensional scaling (MDS), PERMANOVAs and principal co-ordinate analyses. Seasonal variations in taxonomic diversity were determined through Fligner tests of Shannon diversity indices, and for functional diversity, of functional richness (FRich), functional dispersion (FDisp), functional evenness (FEve) and functional divergence (FDiv). Null model analyses were used to determine if the functional indices diverged from randomness across hydrological seasons. Finally, relationships between functional indices and Shannon diversity were explored using linear, power, asymptotic and logistic models. There were significant differences in taxonomic and functional composition between mesohabitats and more markedly across hydrological seasons. All fish assemblages were significantly underdispersed at all instances, while functional evenness was higher than expected in both mesohabitats during low waters, signaling both a strong environmental filtering and niche packing. There were significant linear associations between the Shannon diversity and functional dispersion and between the Shannon diversity and functional evenness, suggesting that functional redundancy in these assemblages is low. In Lake Mamo, fish assemblages are filtered first by seasonality and then by habitat type. As more species are added to the assemblages, niches are more packed in the functional space, but the number of traits increases at a constant rate. This means that if a lake becomes impaired as a consequence of potential oil spills, the loss of fish species could represent also the loss of traits and functions in the ecosystem.

Keywords

Critical Area with Treatment Priority Mesa de Guanipa, functional dispersion, functional evenness, niche packing, Orinoco Oil Belt, temporal trait turnover

Artice information

Received: 26.05.2022. Revised: 26.07.2022. Accepted: 31.07.2022.

The full text of the article
References

Anderson M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26(1): 32–46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x
Arrington D.A., Winemiller K.O. 2003. Diel changeover in sandbank fish assemblages in a neotropical floodplain river. Journal of Fish Biology 63(2): 442–459. DOI: 10.1046/j.1095-8649.2003.00167.x
Arrington D.A., Winemiller K.O. 2006. Habitat affinity, the seasonal flood pulse, and community assembly in the littoral zone of a Neotropical floodplain river. Journal of the North American Benthological Society 25(1): 126–141. DOI: 10.1899/0887-3593(2006)25[126:HATSFP]2.0.CO;2
Arrington D.A., Winemiller K.O., Layman C.A. 2005. Community assembly at the patch scale in a species rich tropical river. Oecologia 144(1): 157–167. DOI: 10.1007/s00442-005-0014-7
Blanco M.V., Flores M.A. 2013. Turismo sustentable como alternativa de desarrollo en las comunidades de la faja petrolífera del Orinoco: Caso: sector laguna de Mamo, municipio Independencia, estado Anzoátegui, Venezuela. Terra 28(44): 105–123.
Camilo G.S., Terra B.F., Araújo F.G. 2018. Using the relationship between taxonomic and functional diversity to assess functional redundancy in streams of an altered tropical watershed. Environmental Biology of Fishes 101(9): 1395–1405. DOI: 10.1007/s10641-018-0786-3
Carvalho R.A., Tejerina-Garro F.L. 2015. The influence of environmental variables on the functional structure of headwater stream fish assemblages: a study of two tropical basins in Central Brazil. Neotropical Ichthyology 13(2): 349–360. DOI: 10.1590/1982-0224-20130148
Casatti L., Teresa F.B., Zeni J.D.O., Ribeiro M.D., Brejão G.L., Ceneviva-Bastos M. 2015. More of the Same: High Functional Redundancy in Stream Fish Assemblages from Tropical Agroecosystems. Environmental Management 55(6): 1300–1314. DOI: 10.1007/s00267-015-0461-9
Chao A., Jost L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93(12): 2533–2547. DOI: 10.1890/11-1952.1
Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H., Colwell R.K., Ellison A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84(1): 45–67. DOI: 10.1890/13-0133.1
Clarke K.R., Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. Plymouth: Plymouth Marine Laboratory. 190 p.
Colonnello G. 1990. A Venezuelan floodplain study on the Orinoco River. Forest Ecology and Management 33–34: 103–124. DOI: 10.1016/0378-1127(90)90187-G
Echevarria G., González N. 2017a. Co-occurrence patterns of fish communities in littorals of three floodplain lakes of the Orinoco River, Venezuela. Journal of Threatened Taxa 9(6): 10249–10260. DOI: 10.11609/jott.2710.9.6.10249-10260
Echevarría G., González N. 2017b. Fish trait diversity in littorals of two floodplain lakes of the highly biodiverse Caura River, Venezuela. Ecology of Freshwater Fish 27(1): 158–169. DOI: 10.1111/eff.12333
Echevarría G., González N. 2018. Fish taxonomic and functional diversity in mesohabitats of the River Kakada, Caura National Park, Venezuela. Nature Conservation Research 3(Suppl.2): 21–39. DOI: 10.24189/ncr.2018.048
Echevarría G., Rodríguez J.P. 2017. Co-occurrence patterns of fish species in two aquatic habitats of the Arauca River floodplain, Venezuela. Community Ecology 18(2): 137–148. DOI: 10.1556/168.2017.18.2.3
Echevarría G., Rodríguez J.P., Machado-Allison A. 2017. Seasonal fluctuations in taxonomic and functional diversity in assemblages of catfishes in the Venezuelan Arauca River Floodplain. Studies on Neotropical Fauna and Environment 53(1): 38–53. DOI: 10.1080/01650521.2017.1387426
Fitzgerald D.B., Winemiller K.O., Sabaj Pérez M.H., Sousa L.M. 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98(1): 21–31. DOI: 10.1002/ecy.1616
Froese R., Pauly D. 2019. FishBase. World Wide Web electronic publication. Available from www.fishbase.org
Galacatos K., Barriga-Salazar R., Stewart D.J. 2004. Seasonal and habitat influences on fish communities within the lower Yasuni River basin of the Ecuadorian Amazon. Environmental Biology of Fishes 71(1): 33–51. DOI: 10.1023/B:EBFI.0000043156.69324.94
González N., Vispo C. 2004. Ecología trófica de algunos peces importantes en lagunas de inundacion del bajo río Caura, Estado Bolívar, Venezuela. Memoria de La Fundación La Salle de Ciencias Naturales 159–160: 147–183.
González N., Lasso C., Rosales J. 2012. Estructura trófica de las comunidades de peces durante un ciclo hidrológico en dos lagunas inundables de la cuenca del bajo Río Orinoco. Memoria de La Fundacion La Salle de Ciencias Naturales 173–174: 39–70.
Gotelli N.J. 2000. Null Model Analysis of Species Co-Occurrence Patterns. Ecology 81(9): 2606–2621. DOI: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
Guillemot N., Kulbicki M., Chabanet P., Vigliola L. 2011. Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage. PLoS ONE 6(10): e26735. DOI: 10.1371/journal.pone.0026735
Hsieh T.C., Ma K.H., Chao A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7(12): 1451–1456. DOI: 10.1111/2041-210X.12613
Keddy P. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3(2): 157–164. DOI: 10.2307/3235676
Kembel S., Cowan P., Helmus M., Cornwell W., Morlon H., Ackerly D., Blomberg S., Webb C. 2015. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11): 1463–1464. DOI: 10.1093/bioinformatics/btq166
Laliberté E., Legendre P., Shipley B. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.1. Available from https://cran.r-project.org/web/packages/FD/index.html
Lasso C.A. 1988. Inventario de la ictiofauna de nueve lagunas de inundación del bajo Orinoco, Venezuela. Parte I: Batoidei-Clupeomorpha-Ostariophysi (Characiformes). Memoria de La Fundacion La Salle de Ciencias Naturales 48(130): 121–131.
MacArthur R.H. 1970. Species packing and competitive equilibrium for many species. Theoretical Population Biology 1(1): 1–11. DOI: 10.1016/0040-5809(70)90039-0
MacArthur R.H., Levins R. 1967. The Limiting Similarity, Convergence, and Divergence of Coexisting Species. American Naturalist 101(921): 377–385.
Machado-Allison A. 2017. La conservación de ambientes acuáticos: petróleo y otras actividades mineras en Venezuela. In: D. Rodríguez-Olarte (Eds.): Ríos en riesgo de Venezuela. Vol. 1. Barquisimeto, Venezuela: Universidad Centroccidental Lisandro Alvarado. P. 189–201.
Montaña C.G., Winemiller K.O. 2010. Local-scale habitat influences morphological diversity of species assemblages of cichlid fishes in a tropical floodplain river. Ecology of Freshwater Fish 19(2): 216–227. DOI: 10.1111/j.1600-0633.2010.00406.x
Mouillot D., Dumay O., Tomasini J.A. 2006. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine, Coastal and Shelf Science 71(3–4): 443–456. DOI: 10.1016/j.ecss.2006.08.022
Quirino A.B., Lansac-Tôha F.M., Thomaz S.M., Heino J., Fugi R. 2021. Macrophyte stand complexity explains the functional α and β diversity of fish in a tropical river-floodplain. Aquatic Sciences 83(1): 12. DOI: 10.1007/s00027-020-00768-2
R Development Core Team. 2012. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.r-project.org/
Rappoldt C., Hogeweg P. 1980. Niche Packing and Number of Species. American Naturalist 116(4): 480–492.
Rial A. 2009. Plantas acuáticas de los llanos inundables del Orinoco, Venezuela. Caracas: Fundación La Salle de Ciencias Naturales; Conservación Internacional; Gold Reserve Inc. 392 p.
Rodrigues Bordignon C., Casatti L., Pérez-Mayorga M.A., Teresa F.B., Brejão G.L. 2015. Fish complementarity is associated to forests in Amazonian streams. Neotropical Ichthyology 13(3): 579–590. DOI: 10.1590/1982-0224-20140157
Toussaint A., Charpin N., Brosse S., Villéger S. 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports 6(1): 22125. DOI: 10.1038/srep22125
Tuya F., Herrero-Barrencua A., Bosch N.E., Abreu A.D., Haroun R. 2018. Reef fish at a remote tropical island (Principe Island, Gulf of Guinea): disentangling taxonomic, functional and phylogenetic diversity patterns with depth. Marine and Freshwater Research 69(3): 395–402. DOI: 10.1071/MF17233
UNEP-WCMC. 2022. Protected Area Profile for Mesa de Guanipa from the World Database on Protected Areas. Available from https://www.protectedplanet.net/30659
Valbo-Jørgensen J., Lasso C.A., Blanco-Belmonte L. 2000. Fish biomass and density in macrophyte habitats in floodplain lakes of the Orinoco basin, Venezuela. Memoria de La Fundacion La Salle de Ciencias Naturales 40(153): 35–50.
Villéger S., Mason N.W.H., Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8): 2290–2301. DOI: 10.1890/07-1206.1
Vispo C.R., Lasso C., Lasso-Alcalá O., González N. 2003. Geographical and temporal variation in fish communities of the floodplain lakes of the lower Caura drainage in the Venezuelan Guayana. Scientia Guaianae 12: 297–327.
Vitule J.R.S., Agostinho A.A., Azevedo-Santos V.M., Daga V.S., Darwall W.R.T., Fitzgerald D.B., Frehse F.A., Hoeinghaus D.J., Lima-Junior D.P., Magalhães A.L.B., Orsi M.L., Padial A.A., Pelicice F., Petrere M., Pompeu P.S., Winemiller K.O. 2017. We need better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodiversity and Conservation 26(3): 757–762. DOI: 10.1007/s10531-016-1258-8
Weiher E., Keddy P. 2004. Assembly rules as general constraints on community composition. In: E. Weiher, P. Keddy (Eds.): Ecological Assembly Rules. Perspectives, advances, retreats. Cambridge: Cambridge University Press. P. 251–271.