Eugene P. Ieshko, Dr. Sc., Chief Researcher of Animal and Plant Parasitology Laboratory of Institute of Biology KarRC RAS (185910, Russia, Petrozavodsk, Pushkinskaya Street 11); iD ORCID:; e-mail:;
Darya I. Lebedeva, PhD, Senior Researcher of Animal and Plant Parasitology Laboratory of Institute of Biology KarRC RAS (185910, Russia, Petrozavodsk, Pushkinskaya Street 11); iD ORCID:; e-mail:
Larisa V. Anikieva, Dr. Sc., Senior Researcher of Animal and Plant Parasitology Laboratory of Institute of Biology KarRC RAS (185910, Russia, Petrozavodsk, Pushkinskaya Street 11); e-mail:
Vyacheslav V. Gorbach, Dr. Sc., Head of the Department of Zoology and Ecology of Petrozavodsk State University (185910, Russia, Petrozavodsk, Lenina Avenue 33); iD ORCID:; e-mail:
Nikolay V. Ilmast, Dr. Sc., Head of the Laboratory for Fish and Water Invertebrate Ecology of Institute of Biology KarRC RAS (185910, Russia, Petrozavodsk, Pushkinskaya Street 11); iD ORCID:; e-mail:

Reference to article

Ieshko E.P., Lebedeva D.I., Anikieva L.V., Gorbach V.V., Ilmast N.V. 2022. Helminth communities of Coregonus lavaretus (Salmonidae: Coregoninae) from Lake Kamennoye (Kostomuksha State Nature Reserve, Russia). Nature Conservation Research 7(3): 75–87.

Section Research articles

Macroecological models are useful for assessing trends in variability for developing monitoring strategies of successional changes and anthropogenic transformation of aquatic ecosystems. Modelling of the relationships of the generalised population indices also makes possible to reveal qualitative differences in the structure of parasite component communities. We analysed helminth communities of Coregonus lavaretus from a natural water body, Lake Kamennoye (Kostomuksha State Nature Reserve, Russia). The component community of metazoan parasites of C. lavaretus was represented by nine helminth species. Infection with cestodes (two species), nematodes (three species), and trematodes (one species) reflects the presence of zooplankton, aquatic insects and molluscs in the diet of fish, while infection with trematode larvae (three species) occurs by percutaneous penetration. The complete ITS1-5.8S-ITS2 cluster of the rRNA gene was sequenced in order to identify trematode larvae. Metacercariae of Diplostomum sp. LIN 5 were the most abundant among them. Using populational approaches, we described the species richness and the diversity of infra- and component communities of the parasites. We also described the species composition and the structure of the component community, the distribution and the accumulation rate of species richness, and the relationships between the infection intensity and the prevalence. Five species (Diplostomum sp. LIN5, Tylodelphys immer, Crepidostomum farionis, Proteocephalus longicollis, and Raphidascaris acus) were considered as the core species of the component community, while other helminths were considered as satellite species. We conclude that infra-communities play a key role in the formation of species richness, structure and abundance of the parasitic component community of C. lavaretus. Infra-communities in younger age groups of C. lavaretus are characterised by the paucity and a relatively high diversity of the species composition of parasites, which is probably a consequence of their diverse diet. In older fish, the species richness of infra-communities increases but the species diversity of the parasites declines, indicating a pronounced dietary specialisation. An analysis of species richness and population characteristics indicates that in Lake Kamennoye, the parasite communities of C. lavaretus are fairly stable, which reflects the stability of the entire lake ecosystem.


abundance, parasites, population, prevalence, species richness, trophic webs, whitefish

Artice information

Received: 07.06.2022. Revised: 22.07.2022. Accepted: 24.07.2022.

The full text of the article

Achatz T.J., Martens J.R., Kostadinova A., Pulis E.E., Orlofske S.A., Bell J.A., Fecchio A., Oyarzún-Ruiz P., Syrota Y.Y., Tkach V.V. 2022. Molecular phylogeny of Diplostomum, Tylodelphys, Austrodiplostomum and Paralaria (Digenea: Diplostomidae) necessitates systematic changes and reveals a history of evolutionary host switching events. International Journal for Parasitology 52(1): 47–63. DOI: 10.1016/j.ijpara.2021.06.002
Allan B.F., Keesing F., Ostfeld R.S. 2003. Effect of forest fragmentation on Lyme disease risk. Conservation Biology 17(1): 267–272. DOI: 10.1046/j.1523-1739.2003.01260.x
Anikieva L.V., Ieshko E.P. 2019. The parasite fauna succession in Coregonid fish associated with anthropogenic eutrophication of Lake Syamozero. Parazitologiya 53(4): 283–293. DOI: 10.1134/S0031184719040021 [In Russian]
Anikieva L.V., Malakhova R.P., Ieshko E.P. 1983. Ecological analysis of parasites of coregonids. Leningrad: Nauka. 167 p. [In Russian]
Barskaya Y.Y., Ieshko E.P., Lebedeva D.I. 2008. Parasites of Salmonidae fish of Fennoscandia. Petrozavodsk: Karelian Research Centre. 168 p. [In Russian]
Bauer O.N. (Ed.). 1987. Identification Key of Freshwater Fish Parasite Fauna in USSR. Vol. 3: Parasitic Multicellular Organisms (Second Part)). Leningrad: Nauka. 583 p. [In Russian]
Bush A.O., Holmes J.C. 1986. Intestinal helminths of lesser scaup ducks: Patterns of association. Canadian Journal of Zoology 64(1): 132–142. DOI: 10.1139/z86-022
Bykhovskaya-Pavlovskaya I.E. 1985. Fish parasites. Study guide. Leningrad: Nauka. 121 p. [In Russian]
Chugunova N.I. 1959. Fish study guide. Moscow: AS USSR. 163 p. [In Russian]
Dobson A.P., May R.M. 1987. The effects of parasites on fish populations – theoretical aspects. International Journal for Parasitology 17(2): 363–370. DOI: 10.1016/0020-7519(87)90111-1
Dove A.D.M., Cribb T.H. 2006. Species accumulation curves and their applications in parasite ecology. Trends in Parasitology 22(12): 568–574. DOI: 10.1016/
Faltýnková A., Georgieva S., Kostadinova A., Blasco-Costa I., Scholz T., Skírnisson K. 2014. Diplostomum von Nordmann, 1832 (Digenea: Diplostomidae) in the sub-Arctic: descriptions of the larval stages of six species discovered recently in Iceland. Systematic Parasitology 89(3): 195–213. DOI: 10.1007/s11230-014-9517-0
Galazzo D.E., Dayanandan S., Marcogliese D.J., McLaughlin J.D. 2002. Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Canadian Journal of Zoology 80(12): 2207–2217. DOI: 10.1139/z02-198
Gaston K.J. 1996. The multiple forms of the interspecific abundance-distribution relationship. Oikos 76(2): 211–220. DOI: 10.2307/3546192
Gaston K.J. 2006. Biodiversity and extinction: Macroecological patterns and people. Progress in Physical Geography 30(2): 258–269. DOI: 10.1191/0309133306pp483pr
Gaston K.J., Blackburn T.M., Greenwood J.J.D., Gregory R.D., Quinn R.M., Lawton J.H. 2000. Abundance–occupancy relationships. Journal of Applied Ecology 37(s1): 39–59. DOI: 10.1046/j.1365-2664.2000.00485.x
Gaston K.J., Borges P.A.V., He F., Gaspar C. 2006. Abundance, spatial variance and occupancy: arthropod species distribution in the Azores. Journal of Animal Ecology 75(3): 646–656. DOI: 10.1111/j.1365-2656.2006.01085.x
Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 9.
Hanski I.A. 1982. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38(2): 210–221. DOI: 10.2307/3544021
Hanski I., Gyllenberg M. 1993. Two General Metapopulation Models and the Core-Satellite Species Hypothesis. American Naturalist 142(1): 17–41. DOI: 10.1086/285527
Heino J. 2005. Positive relationship between regional distribution and local abundance in stream insects: a consequence of niche breadth or niche position. Ecography 28(3): 345–354. DOI: 10.1111/j.0906-7590.2005.04151.x
Holmes J.C., Price P.W. 1986. Parasite communities: the roles of phylogeny and ecology. Systematic Zoology 29(2): 203–213. DOI: 10.2307/2412650
Ieshko E.P., Malakhova R.P., Golitsyna N.B. 1983. Ecological features of the fauna of fish parasites in lakes of River Kamennaya system. In: Ecology of parasitic organisms in biogeocenoses of the North. Leningrad: Nauka. P. 5–25. [In Russian]
Ieshko E.P., Malakhova R.P., Golitsyna N.B. 1997. Ecological characteristics of lake fish parasite fauna formation in the River Kivijoki system. In: Ecosystems, fauna and flora of the Finnish Russian Nature Reserve Friendship. Helsinki: Finnish Environment Institute. P. 311–318.
Ieshko E.P., Lebedeva D.I., Anikieva L.V., Ilmast N.V., Yakovleva G.A. 2015. Parasites of the common roach (Rutilus rutilus L.) under the impact of industrial pollution of a lake. Parazitologiya 49(5): 352–364. [In Russian]
Ieshko E.P., Korosov A.V., Sokolov S.G. 2019. Species richness of parasite assemblages in the Chinese Slipper Perccottus glenii Dybowski, 1877 (Actinopterygii) in the host's native and non-native ranges. Parazitologiya 53(2): 145–158. DOI: 10.1134/S0031184719020066 [In Russian]
Ieshko E.P., Korosov A.V., Nikonorova I.A., Bugmyrin S.V. 2020. Species richness of helminth communities in relation to host abundance variations (the case of the common shrew Sorex araneus). Parazitologiya 54(1): 3–12. DOI: 10.31857/S1234567806010010 [In Russian]
Ilmast N.V., Sterligova O.P., Kuchko Ya.A., Pavlovsky S.A. 2014. Biota state in Lake Kamennoe (Northern Karelia). Proceedings of Samara Scientific Center of RAS 16(1–4): 972–977. [In Russian]
Ilmast N.V., Sendek D.S., Titov S.F., Abramov S.A., Zuykova E.I., Bochkarev N.A. 2016. On the differentiation of the ecological forms/subspecies of the whitefish Coregonus lavaretus from Lake Kamennoye. Proceedings of Petrozavodsk State University 4(157): 42–53. [In Russian]
Keesing F., Holt R.D., Ostfeld R.S. 2006. Effects of species diversity on disease risk. Ecology Letters 9(4): 485–498. DOI: 10.1111/j.1461-0248.2006.00885.x
Khalil L.F., Jones A., Bray R.A. 1994. Keys to the Cestode Parasites of Vertebrates. Wallingford, UK: CAB International. 752 p.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547–1549. DOI: 10.1093/molbe v/msy09
Kuperman B.I. 1973. Cestodes of the genus Triaenophorus – parasites of fishes. Experimental taxonomy, ecology. Leningrad: Nauka. 277 p. [In Russian]
Lafferty K.D., Dobson A.P., Kuris A.M. 2006. Parasites dominate food web links. Proceedings of the National Academy of Sciences of the United States of America 103(30): 11211–11216. DOI: 10.1073/pnas.0604755103
Locke S.A., Van Dam A., Caffara M., Pinto H.A., López-Hernández D., Blanar C.A. 2018. Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. International Journal for Parasitology 48(13): 1043–1059. DOI: 10.1016/j.ijpara.2018.07.001
Marcogliese D.J., Cone D.K. 1997. Food webs: A plea for parasites. Trends in Ecology and Evolution 12(8): 320–325. DOI: 10.1016/S0169-5347(97)01080-X
Mastitskiy S.E., Shitikov V.K. 2014. Randomisation and Bootstrap: statistical analysis in biology and ecology using R. Togliatti: Kassandra. 314 p. [In Russian]
Matthee S., Krasnov B.R. 2009. Searching for generality in the patterns of parasite abundance and distribution: ectoparasites of a South African rodent, Rhabdomys pumilio. International Journal for Parasitology 39(7): 781–788. DOI: 10.1016/j.ijpara.2008.12.003
Morand S., Krasnov B. 2008. Why apply ecological laws to epidemiology? Trends in Parasitology 24(7): 304–309. DOI: 10.1016/
Moravec F. 1982. Bionomics of Crepidostomum metoecus (Trematoda: Allocreadiidae). Vestnik Ceskoslovenske spolecnosti zoologicke 46: 15–24.
Moravec F. 1994. Parasitic nematodes of freshwater fishes of Europe. Prague: Springer Dordrecht. 470 p.
Nemova N.N., Ieshko E.P., Meshcheryakova O.V., Ilmast N.V., Anikieva L.V., Lebedeva D.I., Churova M.V., Sterligova O.P., Kuchko Y.A. 2012. The European Whitefish, Coregonus lavaretus (L.), under conditions of technogenic pollution in the Kostomuksha tailing pond. Russian Journal of Ecology 43(4): 323–327. DOI: 10.1134/S1067413612040091
Pérez-del-Olmo A., Morand S., Raga J.A., Kostadinova A. 2011. Abundance–variance and abundance–occupancy relationships in a marine host–parasite system: The importance of taxonomy and ecology of transmission. International Journal for Parasitology 41(13–14): 1361–1370. DOI: 10.1016/j.ijpara.2011.09.003
Pérez-del-Olmo A., Georgieva S., Pula H.J., Kostadinova A. 2014. Molecular and morphological evidence for three species of Diplostomum (Digenea: Diplostomidae), parasites of fishes and fish-eating birds in Spain. Parasites and Vectors 7(1): 502. DOI: 10.1186/s13071-014-0502-x
Pervozvansky V.Ya. 1986. Fishes of waters in the Kostomuksha iron ore deposit area (ecology, reproduction, uses). Petrozavodsk: Karelian Research Centre. 216 p. [In Russian]
Petkevičiūtė R., Stunžėnas V., Zhokhov A.E., Poddubnaya L.G., Stanevičiūtė G. 2018. Diversity and phylogenetic relationships of European species of Crepidostomum Braun, 1900 (Trematoda: Allocreadiidae) based on rDNA, with special reference to Crepidostomum oschmarini Zhokhov & Pugacheva, 1998. Parasites and Vectors 11: 530. DOI: 10.1186/s13071-018-3095-y
Posada D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25(7): 1253–1256. DOI: 10.1093/molbev/msn083
Poulin R. 1998. Comparison of three estimators of species richness in parasite component communities. Journal of Parasitology 84(3): 485–490. DOI: 10.2307/3284710
Pravdin I.F. 1966. Fish study guide. Moscow: Nauka. 376 p. [In Russian]
Pugachev O.N. 2003. Catalogue of parasites of freshwater water bodies of Northern Asia. Trematoda. Saint-Petersburg: Zoological Institute of RAS. 224 p. [In Russian]
R Core Team. 2020. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from
Rambaut A. 2016. Figtree version 1.4.3. Available from
Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. DOI: 10.1093/bioinformatics/btg180
Sarabeev V. 2015. Helminth species richness of introduced and native grey mullets (Teleostei: Mugilidae). Parasitology International 64(4): 6–17. DOI: 10.1016/j.parint.2015.01.001
Sarabeev V., Balbuena J.A., Morand S. 2018. Invasive parasites are detectable by their abundance-occupancy relationships: the case of helminths from Liza haematocheilus (Teleostei: Mugilidae). International Journal for Parasitology 48(9–10): 793–803. DOI: 10.1016/j.ijpara.2018.04.001
Sellers A.J, Ruiz G.M, Leung B., Torchin M.E. 2015. Regional variation in parasite species richness and abundance in the introduced range of the invasive Lionfish, Pterois volitans. PLoS ONE 10(6): e0131075. DOI: 10.1371/journal.pone.0131075
Shigin A.A. 1986. Trematodes in the fauna of the USSSR: the genus Diplostomum. Metacercariae. Moscow: Nauka. 255 p. [In Russian]
Shitikov V.K., Rosenberg G.S. 2013. Randomization and Bootstrap: statistical analysis in biology and ecology using R. Togliatti: Kassandra. 314 p. [In Russian]
Soldánová M., Georgieva S., Roháčová J., Knudsen R., Kuhn J.A., Henriksen E.H., Siwertsson A., Shaw J.C., Kuris A.M., Amundsen P., Scholz T., Lafferty K.D., Kostadinova A. 2017. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. International Journal for Parasitology 47(6): 327–345. DOI: 10.1016/j.ijpara.2016.12.008
Sonnenholzner J.I., Lafferty K.D., Ladah L.B. 2011. Food Webs and Fishing Affect Parasitism of the Sea Urchin Eucidaris galapagensis in the Galápagos. Ecology 92(12): 2276–284. DOI: 10.1890/11-0559.1
Taylor L. 1961. Aggregation, Variance and the Mean. Nature 189(4766): 732–735. DOI: 10.1038/189732a0
Vainikka A., Jakubavičiūtė E., Hyvärinen P. 2017. Synchronous decline of three morphologically distinct whitefish (Coregonus lavaretus) stocks in Lake Oulujärvi with concurrent changes in the fish community. Fisheries Research 196: 34–46. DOI: 10.1016/j.fishres.2017.08.013
Verberk W.C.E.P., van der Velde G., Esselink H. 2010. Explaining abundance–occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. Journal of Animal Ecology 79(3): 589–601. DOI: 10.1111/j.1365-2656.2010.01660.x.
Vikhrev I.V., Ieshko E.P., Kondakov A.V., Mugue N.S., Bovykina G.V., Efremov D.A., Bulakhov A.G., Tomilova A.A., Yunitsyna O.A., Bolotov I.N. 2022. Postglacial Expansion Routes and Mitochondrial Genetic Diversification of the Freshwater Pearl Mussel in Europe and North America. Diversity 14: 477. DOI: 10.3390/d14060477
Vysotskaya R.U., Krupnova M.Y., Ieshko E.P., Anikieva L.V., Lebedeva D.I. 2015. Ecological and biochemical aspects of parasite-host interactions in transformed aquatic bodies: a case study of the cestode Triaenophorus nodulosus and its host, the northern pike Esox lucius. Biology Bulletin 42(3): 246–253. DOI: 10.1134/S1062359015030140
Vysotskaya R.U., Ieshko E.P., Krupnova M.Y., Anikieva L.V., Lebedeva D.I. 2021. Lysosomal enzymes in adaptive responses of cestodes of the genus Triaenophorus. Parazitologiya 55(2): 91–100. DOI: 10.31857/S0031184721020010
Walther B.A., Cotgreave P., Price R.D., Gregory R.D., Clayton D.H. 1995. Sampling effort and parasite species richness. Parasitology Today 11(8): 306–310. DOI: 10.1016/0169-4758(95)80047-6