Walisson K. Siqueira, PhD, Research Assistant of Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (Av. Presidente Antônio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil); iD ORCID:; e-mail:
Arthur L. Moura, PhD Student, Research Assistant of School of Forestry and Wildlife Sciences, Auburn University (Auburn, United States); iD ORCID:; e-mail:
Ramón Perea, PhD, Professor of Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid (Ciudad Universitaria s/n. 28040 Madrid, Spain); iD ORCID:; e-mail:
Michel J. P. Alves, MSc Student of Ecologia e Zoologia de Vertebrados, Instituto de Ciências Biológicas, Universidade Federal do Pará (Av. Perimetral, 5006/5007 – Guamá, 66075-750, Belém, Pará, Brazil); iD ORCID:; e-mail:
Geraldo W. Fernandes, PhD, Full Professor of Ecologia Evolutiva e Biodiversidade, Departamento de Genética, Ecologia e Evolução/Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (Av. Presidente Antônio Carlos, 6627 – Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil); iD ORCID:; e-mail:

Reference to article

Siqueira W.K., Moura A.L., Perea R., Alves M.J.P., Fernandes G.W. 2022. The role of Baccharis (Asteraceae) shrubs in the short-term restoration of Atlantic rainforest. Nature Conservation Research 7(2): 42–53.

Section Research articles

The introduction of nurse species on degraded sites of Permanently Protected Areas represents a useful strategy for vegetation recovery in riparian forest. Species of the genus Baccharis (Asteraceae) have been documented as potential nurse plants being able of restructuring the native plant community. This study was aimed to evaluate the potential nursing role of Baccharis dracunculifolia in the recovery of a native plant community of a degraded Atlantic rainforest in a short-time period. The study was developed in two abandoned pasture areas in a riparian forest in the River Piranga basin, one in which B. dracunculifolia was planted (Restored treatment) to promote restoration, and a second area with no intervention (Degraded = Control treatment). Sampling took place 18 months after the planting of B. dracunculifolia. We set up 20 plots of 2 × 2 m in each treatment type (n = 40 plots), where all plant species were recorded (with the exception of the introduced Baccharis individuals and grasses), classifying them as native, ruderal, or alien. Plant richness was twice higher in the Restored treatment than the Degraded treatment. Furthermore, the observed values of alpha, gamma and beta diversity were also higher in Restored treatment. Restored treatment had 17 exclusive native species, while the Degraded treatment had only three non-exclusive native species. In addition, fewer ruderal and alien species were recorded in the restored plots with B. dracunculifolia compared to degraded plots. We concluded that, even in a short time period, planting B. dracunculifolia had a positive effect on promoting the assembly of the native plant community and possibly decreasing the chances of invasion by alien species.


community assembly, ecological restoration, null model, plant facilitation, plant invasion, River Piranga basin, species colonisation

Artice information

Received: 26.01.2022. Revised: 24.03.2022. Accepted: 28.03.2022.

The full text of the article

Arroyo‐Rodríguez V., Rös M., Escobar F., Melo F.P., Santos B.A., Tabarelli M., Chazdon R. 2013. Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. Journal of Ecology 101(6): 1449–1458. DOI: 10.1111/1365-2745.12153
Bailey J., Mayrsohn C., Doescher P.S., Pierre E.S., Tappeiner J.C. 1998. Understory vegetation in old and young Douglas-fir forests of western Oregon. Forest Ecology and Management 112(3): 289–302. DOI: 10.1016/S0378-1127(98)00408-3
Bakker J.P., Poschlod P., Strykstra R.J., Bekker R.M., Thompson K. 1996. Seed banks and seed dispersal: important topics in restoration ecology. Acta Botanica Neerlandica 45(4): 461–490. DOI: 10.1111/j.1438-8677.1996.tb00806.x
Bates D., Maechler M., Bolker B., Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1): 1–48. DOI: 10.18637/jss.v067.i01
Bogoni J.A., Graipel M.E., Oliveira-Santos L.G.R., Cherem J.J., Giehl E.L.H., Peroni N. 2017. What would be the diversity patterns of medium- to large-bodied mammals if the fragmented Atlantic Forest was a large metacommunity? Biological Conservation 211(A): 85–94. DOI: 10.1016/j.biocon.2017.05.012
Bradshaw A.D., Chadwick M.J. 1980. The Restoration of Land. Oxford: Blackwell. 317 p.
Brennan S., Laris P.S., Rodrigue C.M. 2018. Coyote brush as facilitator of native California plant recovery in the Santa Monica mountains. Madroño 65(1): 47–59. DOI: 10.3120/0024-9637-65.1.47
Brockerhoff E.G., Ecroyd C.E., Leckie A.C., Kimberley M.O. 2003. Diversity and succession of adventive and indigenous vascular understorey plants in Pinus radiata plantation forests in New Zealand. Forest Ecology and Management 185(3): 307–326. DOI: 10.1016/S0378-1127(03)00227-5
Callaway R.M., D'Antonio C.M. 1991. Shrub facilitation of coast live oak establishment in central California. Madroño 38(3): 158–169.
Cao S., Chen L., Shankman D., Wang C., Wang X., Zhang H. 2011. Excessive reliance on afforestation in China's arid and semi-arid regions: lessons in ecological restoration. Earth-Science Reviews 104(4): 240–245. DOI: 10.1016/j.earscirev.2010.11.002
Carvalho F., Godoy E.L., Lisboa F.J., de Souza Moreira F.M., de Souza F.A., Berbara R.L.L., Fernandes G.W. 2014. Relationship between physical and chemical soil attributes and plant species diversity in tropical mountain ecosystems from Brazil. Journal of Mountain Science 11(4): 875–883. DOI: 10.1007/s11629-013-2792-4
Castro J., Zamora R., Hódar J.A., Gómez J.M. 2002. Use of shrubs as nurse plants: a new technique for reforestation in Mediterranean mountains. Restoration Ecology 10(2): 297–305. DOI: 10.1046/j.1526-100X.2002.01022.x
Cavieres L.A., Badano E.I. 2010. Consequences of facilitation on species diversity in terrestrial plant communities. In: F.I. Pugnaire (Ed.): Positive plant interactions and community dynamics. Boca Raton, FL: CRC Press. P. 39–57.
Chamberlain A.S., Szöcs E. 2013. Taxize: taxonomic search and retrieval in R. F1000Research 2: 191. DOI: 10.12688/f1000research.2-191.v2
Chaneton E.J., Facelli J.M. 1991. Disturbance effects on plant community diversity: spatial scales and dominance hierarchies. Vegetatio 93(2): 143–155. DOI: 10.1007/BF00033208
Chazdon R.L., Uriarte M. 2016. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48(6): 709–715. DOI: 10.1111/btp.12409
Ciccazzo S., Esposito A., Rolli E., Zerbe S., Daffonchio D., Brusetti L. 2014. Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. Springer Plus 3(1): 391. DOI: 10.1186/2193-1801-3-391
Corrêa R.S. 2009. Recuperação de áreas degradadas pela mineração no cerrado. Brasília: Universa. 169 p.
Crawley M.J. 2013. The R Book. 2nd ed. New York: John Wiley and Sons. 950 p.
Crouzeilles R., Ferreira M.S., Chazdon R.L., Lindenmayer D.B., Sansevero J.B., Monteiro L., Iribarrem A., Lataweic A., Strassburg B.B. 2017. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances 3(11): e1701345. DOI: 10.1126/sciadv.1701345
Duarte L.D.S, dos Santos M.M., Hartz S.M., Pillar V.D. 2006. Role of nurse plants in araucaria forest expansion over grassland in south Brazil. Austral Ecology 31(4): 520–528. DOI: 10.1111/j.1442-9993.2006.01602.x
Fagundes M., Weisser W., Ganade G. 2018. The role of nurse successional stages on species-specific facilitation in drylands: Nurse traits and facilitation skills. Ecology and Evolution 8(10): 5173–5184. DOI: 10.1002/ece3.3962
Fernandes G.W. (Ed.). 2016. Ecology and conservation of mountaintop grasslands in Brazil. Cham: Springer. 567 p. DOI: 10.1007/978-3-319-29808-5
Fernandes G.W., Silva J.O., Espírito-Santo M.M., Fagundes M., Oki Y., Carneiro M.A.A. 2014. Baccharis: A Neotropical Model System to Study Insect Plant Interactions. In: G.W. Fernandes, and J.C. Santos (Eds.): Neotropical Insect Galls. Dordrecht: Springer. P. 193–219. DOI: 10.1007/978-94-017-8783-3_13
Fernandes G.W., Santos R., Barbosa N.P.U., Almeida H.A., Carvalho V., Angrisano P. 2015. Occurrence of non-native and exotic plants in restored areas of rupestrian grasslands. Planta Daninha 33(3): 463–482. DOI: 10.1590/S0100-83582015000300009
Fernandes G.W., Oki Y., Belmiro M.S., Resende F.M., Junior A.C., de Azevedo J.L. 2018. Multitrophic interactions among fungal endophytes, bees, and Baccharis dracunculifolia: resin tapering for propolis production leads to endophyte infection. Arthropod-Plant Interactions 12(3): 329–337. DOI: 10.1007/s11829-018-9597-x
Filazzola A., Lortie C.J. 2014. A systematic review and conceptual framework for the mechanistic pathways of nurse plants. Global Ecology and Biogeography 23(12): 1335–1345. DOI: 10.1111/geb.12202
Franco A.C., Nobel P.S. 1989. Effect of nurse plants on the microhabitat and growth of cacti. Journal of Ecology 77(3): 870–886. DOI: 10.2307/2260991
Gomes J.P.S.B.A., Maciel L.O.V. 2018. Diagnóstico dos crimes ambientais das Comarcas de Conselheiro Lafaiete, Congonhas, Entre Rios de Minas e Piranga. Revista Direito Ambiental e Sociedade 7(2): 29–60.
Gómez-Aparicio L., Zamora R., Gómez J.M., Hódar J.A., Castro J., Baraza E. 2004. Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecological Applications 14(4): 1128–1138. DOI: 10.1890/03-5084
González E., Masip A., Tabacchi E., Poulin M. 2016. Strategies to restore floodplain vegetation after abandonment of human activities. Restoration Ecology 25(1): 82–91. DOI: 10.1111/rec.12400
Grime J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111(982): 1169–1194.
Holl K.D., Aide T.M. 2011. When and where to actively restore ecosystems? Forest Ecology and Management 261(10): 1558–1563. DOI: 10.1016/j.foreco.2010.07.004
Holmgren M., Scheffer M. 2010. Strong facilitation in mild environments: the stress gradient hypothesis revisited. Journal of Ecology 98(6): 1269–1275. DOI: 10.1111/j.1365-2745.2010.01709.x
Kikvidze Z., Pugnaire F.I., Brooker R.W., Choler P., Lortie C.J., Michalet R., Callaway R.M. 2005. Linking patterns and processes in alpine plant communities: a global study. Ecology 86(6): 1395–1400. DOI: 10.1890/04-1926
Kou M., Garcia-Fayos P., Hu S., Jiao J. 2016. The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): A chronosequence approach. Forest Ecology and Management 375: 146–158. DOI: 10.1016/j.foreco.2016.05.025
Le Stradic S., Fernandes G.W., Buisson E. 2018. No recovery of campo rupestre grasslands after gravel extraction: implications for conservation and restoration. Restoration Ecology 26(S2): 151–159. DOI: 10.1111/rec.12713
Li W., Li J., Liu S., Zhang R., Qi W., Zhang R., Knops J.M.H., Lu J. 2017. Magnitude of species diversity effect on aboveground plant biomass increases through successional time of abandoned farmlands on the eastern Tibetan Plateau of China. Land Degradation and Development 28(1): 370–378. DOI: 10.1002/ldr.2607
Lu R., Zheng J., Jia C., Liu Y., Huang Z., He H., Han F., Wu G.L. 2018. Nurse effects of patch-canopy microhabitats promote herbs community establishment in sandy land. Ecological Engineering 118: 126–133. DOI: 10.1016/j.ecoleng.2018.04.019
Marcon E., Hérault B. 2015. Entropart, an R package to partition diversity. Available from
Metzger J.P., Bustamante M.M., Ferreira J., Fernandes G.W., Librán-Embid F., Pillar V.D., Prist P.R., Rodrigues R.R., Vieira I.C.G., Overbeck G.E. 2019. Why Brazil needs its legal reserves. Perspectives in Ecology and Conservation 17(3): 91–103. DOI: 10.1016/j.pecon.2019.07.002
Moro M.F., Souza V.C., Oliveira-Filho A.T.D., Queiroz L.P.D., Fraga C.N.D., Rodal M.J.N., Araújo D.S.F., Martins F.R. 2012. Alienígenas na sala: o que fazer com espécies exóticas em trabalhos de taxonomia, florística e fitossociologia? Acta Botanica Brasilica 26(4): 991–999. DOI: 10.1590/S0102-33062012000400029
Myers J.A., Chase J.M., Crandall R.M., Jiménez I. 2015. Disturbance alters beta-diversity but not the relative importance of community assembly mechanisms. Journal of Ecology 103(5): 1291–1299. DOI: 10.1111/1365-2745.12436
Negreiros D., Esteves D., Fernandes G.W., Berbara R.L.L., Oki Y., Vichiato M., Chalub C. 2014. Growth-survival tradeoff in the widespread tropical shrub Baccharis dracunculifolia (Asteraceae) in response to a nutrient gradient. Tropical Ecology 55(2): 167–176.
Oksanen J., Blanchet G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. 2013. Vegan: community ecology package. R package version 2.0-7. Available from
Padilla F.M., Pugnaire F.I. 2006. The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment 4(4): 196–202. DOI: 10.1890/1540-9295(2006)004[0196:TRONPI]2.0.CO;2
Parrotta J.A., Knowles O.H. 1999. Restoration of Tropical Moist Forests on Bauxite-Mined Lands in the Brazilian Amazon. Restoration Ecology 7(2): 103–116. DOI: 10.1046/j.1526-100X.1999.72001.x
Parrotta J.A., Turnbull J.W., Jones N. 1997. Catalyzing native forest regeneration on degraded tropical lands. Forest Ecology and Management 99(1–2): 1–7. DOI: 10.1016/S0378-1127(97)00190-4
Paterno G.B., Siqueira Filho J.A., Ganade G. 2016. Species-specific facilitation, ontogenetic shifts and consequences for plant community succession. Journal of Vegetation Science 27(3): 606–615. DOI: 10.1111/jvs.12382
Peláez M., Dirzo R., Fernandes G.W., Perea R. 2019. Nurse plant size and biotic stress determine quantity and quality of plant facilitation in oak savannas. Forest Ecology and Management 437: 435–442. DOI: 10.1016/j.foreco.2019.02.010
Perea R., Cunha J.S., Spadeto C., Gomes V.M., Moura A.L., Rúbia B., Fernandes G.W. 2019. Nurse shrubs to mitigate plant invasion along roads of montane Neotropics. Ecological Engineering 136: 193–196. DOI: 10.1016/j.ecoleng.2019.06.024
Perrow M.R., Davy A.J. 2002. Handbook of ecological restoration. Vol. 2: Restoration in Practice. Cambridge: Cambridge University Press. 618 p.
R Core Team. 2020. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from
Řehounková K., Prach K. 2008. Spontaneous vegetation succession in gravel–sand pits: a potential for restoration. Restoration Ecology 16(2): 305–312. DOI: 10.1111/j.1526-100X.2007.00316.x
Ren H., Yang L., Liu N. 2008. Nurse plant theory and its application in ecological restoration in lower subtropics of China. Progress in Natural Science 18(2): 137–142. DOI: 10.1016/j.pnsc.2007.07.008
Sánchez-Velásquez L.R., Domínguez-Hernández D., Pineda-López M.D.R., Lara-González R. 2011. Does Baccharis conferta shrub act as a nurse plant to the Abies religiosa seedling? The Open Forest Science Journal 4(1): 67–70. DOI: 10.2174/1874398601104010067
Shaw J.A. 2018. Ammophila arenaria as a nurse plant: Implications for management of an invasive species. Ecological Restoration 36(3): 171–173.
Socolar J.B., Gilroy J.J., Kunin W.E., Edwards D.P. 2016. How should beta-diversity inform biodiversity conservation? Trends in Ecology and Evolution 31(1): 67–80. DOI: 10.1016/j.tree.2015.11.005
Spadeto C., Fernandes G.W., Negreiros D., Kunz S.H. 2017. Facilitative effects of tree species on natural regeneration in an endangered biodiversity hotspot. Brazilian Journal of Botany 40(4): 943–950. DOI: 10.1007/s40415-017-0408-x
Tiedemann A.R., Klemmedson J.O. 1977. Effect of mesquite trees on vegetation and soils in the desert grassland. Journal of Range Management 30(5): 361–367. DOI: 10.2307/3897722
Trnkova R., Řehounková K., Prach K. 2010. Spontaneous succession of vegetation on acidic bedrock in quarries in the Czech Republic. Preslia 82: 333–343.
Zappi D.C., Ranzato Filardi F.L., Leitman P., Souza V.C., Walter B.M.T., Pirani J.R., Morim M.P., Queiroz L.P., Cavalcanti T.B., Mansano V.F., Forzza R.C., Abreu M.C., Acevedo-Rodríguez C., Agra M.F., Almeida E.B., Almeida G.S.S., Almeida R.F., Alves F.M., Alves M., Alves-Araujo A., Amaral M.C.E., Amorim A.M., Amorim B., Andrade I.M., Andreata R.H.P., Andrino C.O., Anunciação E.A., Aona L.Y.S., Aranguren Y., Aranha Filho J.L.M. et al. 2015. Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia 66(4): 1085–1113. DOI: 10.1590/2175-7860201566411