Shitong Wang, Bachelor of the Wuhan Botanical Garden, Chinese Academy of Sciences (430074, China, Wuhan, Jiufeng First Road); Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences (430074, China, Wuhan); University of Chinese Academy of Sciences (100049, China, Beijing); e-mail:
Yaozhan Xu, PhD, Associate Professor of the Wuhan Botanical Garden, Chinese Academy of Sciences (430074, China, Wuhan, Jiufeng First Road); Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences (430074, China, Wuhan); University of Chinese Academy of Sciences (100049, China, Beijing); e-mail:
Xinzeng Wei, PhD, Professor of the Wuhan Botanical Garden, Chinese Academy of Sciences (430074, China, Wuhan, Jiufeng First Road); Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences (430074, China, Wuhan); University of Chinese Academy of Sciences (100049, China, Beijing); iD ORCID:; e-mail:
Mingxi Jiang, PhD, Professor of the Wuhan Botanical Garden, Chinese Academy of Sciences (430074, China, Wuhan, Jiufeng First Road); Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences (430074, China, Wuhan); University of Chinese Academy of Sciences (100049, China, Beijing); iD ORCID:; e-mail:

Reference to article

Wang S., Xu Y., Wei X., Jiang M. 2022. Do leaf functional traits differ between 20–35-year-old transplanted and wild source populations? A case study involving five endangered tree species. Nature Conservation Research 7(2): 32–41.

Section Research articles

Conservation of threatened species through translocation has become an effective way to combat species extinction worldwide. Plant functional traits are good predictors of plant performance and can reflect the adaptation strategies of plants to the environment. However, it is still unclear whether transplanted populations have comparable levels of leaf functional traits to their wild source populations. To assess the effectiveness of conservation-based translocation of long-living endangered tree species, we investigated the long-term (20–35 years) population dynamics of five co-existing endangered tree species (Davidia involucrata, Dipteronia sinensis, Pterostyrax psilophyllus, Tapiscia sinensis, and Tetracentron sinense) in transplanted populations, and compared the leaf functional traits between the transplanted and their wild source populations. We found that the survival rates of the five species in the transplanted populations ranged from 42.86% to 73.81%, and most of these species could blossom and yield fruit. All species had significant differences in some leaf functional traits between transplanted and wild populations. The intraspecific traits variation of some species in the transplanted populations was decreased compared with that in the wild populations on the whole. We conclude that after a long period of translocation, these species in transplanted populations were able to grow normally and most species become more efficient in resource acquisition or utilisation and more resources were available for growth. However, the intraspecific traits variation of some species in transplanted populations may lead to competitive exclusion, affect species coexistence, and thus affect their performance.


conservation-based translocation, intraspecific trait variation, long-living tree species, long-term monitoring, population dynamics

Artice information

Received: 22.11.2021. Revised: 21.03.2022. Accepted: 28.03.2022.

The full text of the article

Ackerly D. 2004. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs 74(1): 25–44. DOI: 10.1890/03-4022
Adler P.B., Fajardo A., Kleinhesselink A.R., Kraft N.J.B. 2013. Trait-based tests of coexistence mechanisms. Ecology Letters 16(10): 1294–1306. DOI: 10.1111/ele.12157
Adler P.B., Salguero-Gómez R., Compagnoni A., Hsu J.S., Ray-Mukherjee J., Mbeau-Ache C., Franco M. 2014. Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences of the United States of America 111(2): 740–745. DOI: 10.1073/pnas.1315179111
Aerts R., Chapin F.S. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 1–67. DOI: 10.1016/s0065-2504(08)60016-1
Agrawal A.A. 2001. Phenotypic plasticity in the interactions and evolution of species. Science 294(5541): 321–326. DOI: 10.1126/science.1060701
Albert C.H., Grassein F., Schurr F.M., Vieilledent G., Violle C. 2011. When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution and Systematics 13(3): 217–225. DOI: 10.1016/j.ppees.2011.04.003
Boucher F.C., Thuiller W., Arnoldi C., Albert C.H., Lavergne S. 2013. Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L. Functional Ecology 27(2): 382–391. DOI: 10.1111/1365-2435.12034
Bresson C.C., Vitasse Y., Kremer A., Delzon S. 2011. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology 31(11): 1164–1174. DOI: 10.1093/treephys/tpr084
Carlucci M.B., Debastiani V.J., Pillar V.D., Duarte L.D.S. 2015. Between- and within-species trait variability and the assembly of sapling communities in forest patches. Journal of Vegetation Science 26(1): 21–31. DOI: 10.1111/jvs.12223
Cho Y.C., Kim H.G., Koo B.Y., Shin J.K. 2019. Dynamics and viability analysis of transplanted and natural lady's slipper (Cypripedium japonicum) populations under habitat management in South Korea. Restoration Ecology 27(1): 23–30. DOI: 10.1111/rec.12835
Cornelissen J.H.C., Lavorel S., Garnier E., Diaz S., Buchmann N., Gurvich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., Poorter H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4): 335–380. DOI: 10.1071/BT02124
de Villemereuil P., Gaggiotti O.E., Mouterde M., Till-Bottraud I. 2016. Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116(3): 249–254. DOI: 10.1038/hdy.2015.93
Dirzo R., Raven P.H. 2003. Global state of biodiversity and loss. Annual Review of Environment and Resources 28: 137–167. DOI: 10.1146/
Ensslin A., Godefroid S. 2020. Ex situ cultivation impacts on plant traits and drought stress response in a multi-species experiment. Biological Conservation 248: 108630. DOI: 10.1016/j.biocon.2020.108630
Ensslin A., Tschöpe O., Burkart M., Joshi J. 2015. Fitness decline and adaptation to novel environments in ex situ plant collections: Current knowledge and future perspectives. Biological Conservation 192: 394–401. DOI: 10.1016/j.biocon.2015.10.012
Fu L.K., Jin J.M. 1992. China Plant Red Data Book: rare and endangered plants. Beijing: Science Press. 741 p.
Gomes V.M., Negreiros D., Fernandes G.W., Pires A.C.V., Silva A.C.D.R., Le Stradic S. 2018. Long-term monitoring of shrub species translocation in degraded Neotropical mountain grassland. Restoration Ecology 26(1): 91–96. DOI: 10.1111/rec.12537
Griffith B., Scott J.M., Carpenter J.W., Reed C. 1989. Translocation as a species conservation tool: status and strategy. Science 245(4917): 477–480. DOI: 10.1126/science.245.4917.477
Havens K., Vitt P., Maunder M., Guerrant E.O., Dixon K. 2006. Ex Situ Plant Conservation and Beyond. BioScience 56(6): 525–531. DOI: 10.1641/0006-3568(2006)56[525:ESPCAB]2.0.CO;2
He S.A. 2002. Fifty years of botanical gardens in China. Acta Botanica Sinica 44(9): 1123–1133.
Heberling J.M., Kichey T., Decocq G., Fridley J.D. 2016. Plant functional shifts in the invaded range: a test with reciprocal forest invaders of Europe and North America. Functional Ecology 30(6): 875–884. DOI: 10.1111/1365-2435.12590
Izuddin M., Yam T.W., Webb E.L. 2018. Specific niche requirements drive long-term survival and growth of translocated epiphytic orchids in an urbanised tropical landscape. Urban Ecosystem 21(3): 531–540. DOI: 10.1007/s11252-018-0733-2
Karbstein K., Prinz K., Hellwig F., Römermann C. 2020. Plant intraspecific functional trait variation is related to within-habitat heterogeneity and genetic diversity in Trifolium montanum L. Ecology and Evolution 10(11): 5015–5033. DOI: 10.1002/ece3.6255
Li T., Wu J., Chen H., Ji L., Yu D., Zhou L., Zhou W., Tong Y., Li Y., Dai L. 2018. Intraspecific functional trait variability across different spatial scales: a case study of two dominant trees in Korean pine broadleaved forest. Plant Ecology 219(8): 875–886. DOI: 10.1007/s11258-018-0840-4
Li Y.Y., Tsang E.P.K., Cui M.Y., Chen X.Y. 2012. Too early to call it success: an evaluation of the natural regeneration of the endangered Metasequoia glyptostroboides. Biological Conservation 150(1): 1–4. DOI: 10.1016/j.biocon.2012.02.020
Liu R., Liang S., Long W., Jiang Y. 2018. Variations in Leaf Functional Traits Across Ecological Scales in Riparian Plant Communities of the Lijiang River, Guilin, Southwest China. Tropical Conservation Science 11(1). DOI:10.1177/1940082918804680
Mayr H. 1906. Fremdländische Wald-und Parkbäume für Europa. Berlin: P. Parey. 622 p.
Mimura M., Yahara T., Faith D.P., Vázquez-Domínguez E., Colautti R.I., Araki H., Javadi F., Nunez-Farfan J., Mori A.S., Zhou S.L., Hollingsworth P.M., Neaves L.E., Fukano Y., Smith G.F., Sato Y.I., Tachida H., Hendry A.P. 2017. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolutionary Applications 10(2): 121–139. DOI: 10.1111/eva.12436
Mounce R., Smith P., Brockington S. 2017. Ex situ conservation of plant diversity in the world's botanic gardens. Nature Plants 3(10): 795–802. DOI: 10.1038/s41477-017-0019-3
Newton A.C. 2008. Conservation of tree species through sustainable use: how can it be achieved in practice? Oryx 42(2): 195–205. DOI: 10.1017/S003060530800759X
Oldfield S.F. 2009. Botanic gardens and the conservation of tree species. Trends in Plant Science 14(11): 581–583. DOI: 10.1016/j.tplants.2009.08.013
Pérez-Harguindeguy N., Diaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., van der Heijden M.G.A., Sack L., Blonder B., Poschlod P. et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61(3): 167–234. DOI: 10.1071/BT12225
Pimm S.L., Jenkins C.N., Abell R., Brooks T.M., Gittleman J.L., Joppa L.N., Raven P.H., Roberts C.M., Sexton J.O. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187): 1246752. DOI: 10.1126/science.1246752
Plein M., Bode M., Moir M.L., Vesk P.A. 2016. Translocation strategies for multiple species depend on interspecific interaction type. Ecological Applications 26(4): 1186–1197. DOI: 10.1890/15-0409
Poorter L., Bongers F. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7): 1733–1743. DOI: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
Rauschkolb R., Szczeparska L., Kehl A., Bossdorf O., Scheepens J.F. 2019. Plant populations of three threatened species experience rapid evolution under ex situ cultivation. Biodiversity and Conservation 28(14): 3951–3969. DOI: 10.1007/s10531-019-01859-9
Reiter N., Whitfield J., Pollard G., Bedggood W., Argall M., Dixon K., Davis B., Swarts N. 2016. Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecology 217(1): 81–95. DOI: 10.1007/s11258-015-0561-x
Ren H., Wang J., Liu H., Yuan L., Xu Y., Zhang Q., Yu H., Luo J. 2016. Conservation introduction resulted in similar reproductive success of Camellia changii compared with augmentation. Plant Ecology 217(2): 219–228. DOI 10.1007/s11258-015-0515-3
Rolhauser A.G., Nordenstahl M., Aguiar M.R., Pucheta E. 2019. Community-level natural selection modes: a quadratic framework to link multiple functional traits with competitive ability. Journal of Ecology 107(3): 1457–1468. DOI: 10.1111/1365-2745.13094
Román-Dañobeytia F.J., Levy-Tacher S.I., Aronson J., Rodrigues R.R., Castellanos-Albores J. 2012. Testing the performance of fourteen native tropical tree species in two abandoned pastures of the Lacandon Rainforest Region of Chiapas, Mexico. Restoration Ecology 20(3): 378–386. DOI: 10.1111/j.1526-100x.2011.00779.x
Sides C.B., Enquist B.J., Ebersole J.J., Smith M.N., Henderson A.N., Sloat L.L. 2014. Revisiting Darwin's hypothesis: does greater intraspecific variability increase species' ecological breadth? American Journal of Botany 101(1): 56–62. DOI: 10.3732/ajb.1300284
Vance C.P., Uhde-Stone C., Allan D.L. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157(3): 423–447. DOI: 10.1046/j.1469-8137.2003.00695.x
Violle C., Navas M.L., Vile D., Kazakou E., Fortunel C., Hummel I., Garnier E. 2007. Let the concept of trait be functional! Oikos 116(5): 882–892. DOI: 10.1111/j.0030-1299.2007.15559.x
Vitasse Y., Lenz A., Kollas C., Randin C.F., Hoch G., Körner C. 2014. Genetic vs. non-genetic responses of leaf morphology and growth to elevation in temperate tree species. Functional Ecology 28(1): 243–252. DOI:10.1111/1365-2435.12161
Wang S., Zheng Z., Peng F., Zhao Z. 1988. The present state of preservation of the precious, rare and threatened plants in Hubei, as well as the proposition for studying further these plants. Journal of Wuhan Botanical Research 6(3): 285–298.
Wendelberger K.S., Fellows M.Q.N., Maschinski J. 2008. Rescue and Restoration: Experimental Translocation of Amorpha herbacea Walter var. crenulata (Rybd.) Isley into a Novel Urban Habitat. Restoration Ecology 16(4): 542–552. DOI: 10.1111/j.1526-100x.2007.00325.x
Westoby M., Falster D.S., Moles A.T., Vesk P.A., Wright I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33(1): 125–159. DOI: 10.1146/annurev.ecolsys.33.010802.150452
Xiao Z.Q., Yang T., Wang S.T., Wei X.Z., Jiang M.X. 2021. Exploring the origin and genetic representation of ex situ living collections of five endangered tree species established for 20–35 years. Global Ecology and Conservation 32: e01928. DOI: 10.1016/j.gecco.2021.e01928
Ye Q.G., Wang C., Wang S.Y. 2000. A preliminary study on the design of a community for ex situ conservation of the rare and endangered plants in the Three Gorge reservoir area. Journal of Wuhan Botanical Research 18(1): 33–41.
Zhang J.H., Zhao N., Liu C.C., Yang H., Li M.L., Yu G.R., Wilcox K., Yu Q., He N.P. 2018. C:N:P stoichiometry in China's forests: From organs to ecosystems. Function Ecology 32(1): 50–60. DOI:10.1111/1365-2435.12979
Zhu Y., Chen C., Guo Y., Fu S., Chen H.Y.H. 2020. Linking leaf-level morphological and physiological plasticity to seedling survival and growth of introduced Canadian sugar maple to elevated precipitation under warming. Forest Ecology and Management 457: 117758. DOI: 10.1016/j.foreco.2019.117758