Vladimir R. Todorov, PhD Student, Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences (2 Gagarin Street, 1113 Sofia, Bulgaria); Balkani Wildlife Society (bul. Dragan Tsankov 8, 1164 Sofia, Bulgaria); e-mail:
Diana P. Zlatanova, PhD, Department of Zoology and Anthropology, Faculty of Biology of the Sofia University “St. Kliment Ohridski" (8 Dragan Tsankov, 1164 Sofia, Bulgaria); e-mail:
Kalina V. Valchinkova, MSc, Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences (2 Gagarin Street, 1113 Sofia, Bulgaria); e-mail:

Reference to article

Todorov V.R., Zlatanova D.P., Valchinkova K.V. 2020. Home range, mobility and hibernation of brown bears (Ursus arctos, Ursidae) in areas with supplementary feeding. Nature Conservation Research 5(4): 1–15.

Electronic Supplement 1. Feeding stations details – GPS co-ordinates, forestry/national park unit, locality and frequency of feeding which is most commonly applied (Link)
Electronic Supplement 2. Camera-trap photos of brown bears on feeding stations in the study area (Link)

Section Research articles

Supplementary feeding, although a common practice, is seldom studied in terms of its effect on non-targeted species, such as the brown bear (Ursus arctos). We conducted a GPS-GSM telemetry study on nine individuals (out of about 100 supposedly inhabiting that area) with the aim to inspect how supplementary feeding stations affect home range size, mobility and hibernation. We formulated three hypothesis: 1) there is a correlation between the home range size and the density of feeding stations; 2) the influence of the artificial feeding stations is not changing during hyperphagia and outside the hyperphagia; 3) hibernation is affected by the density of feeding stations, regardless of the areas with trees in masting age present in the home range and forest age heterogeneity. Our analyses showed that the total home range averaged at 148.9 km2 (range: 24.6–605.1 km2) with 190.1 km2 for males and 76.9 km2 for females. Five out of nine brown bears never visited feeding stations and the density of feeding stations did not explain the home range size variability, thus not receiving evidence to support our first hypothesis. No evidence was found to reject the second hypothesis, while the third hypothesis was rejected for now with the proviso that our sample is not big enough for robust conclusions. The comparison of the home range size, as well as the average displacement distance during and outside the hyperphagia season showed no significant difference, contrary to the outcome of other published studies. Despite the variability of the masting areas proportions and age class heterogeneity, the lack of significant difference between the core area and the total home range for these two factors implied that these resources were not concentrated in the core area of the species, but were rather uniformly distributed throughout the whole territory. Neither density of feeding stations nor masting area proportions were found to be solely responsible for the formation of the hyperphagia home range. Additionally, the similarity in the sizes of the home range size during and outside the hyperphagia season suggested a balance between the variables forming the home range during these periods. Most of the brown bears in our study hibernate in their core area, predominantly in its very centre (0.1 percentile), as earlier hibernation than reported for this region from other studies was recorded. Further studies with a larger sample size on the role of the forest age heterogeneity and mast production on the formation of the home range are needed.


artificial feeding station, forest age heterogeneity, GPS-telemetry, hyperphagia, mast production

Artice information

Received: 03.04.2020. Revised: 05.08.2020. Accepted: 14.08.2020.

The full text of the article

Bojarska K., Drobniak S., Jakubiec Z., Zyśk-Gorczyńska E. 2019. Winter insomnia: How weather conditions and supplementary feeding affect the brown bear activity in a long-term study. Global Ecology and Conservation 17: e00523. DOI: 10.1016/j.gecco.2019.e00523
Chapron G., Kaczensky P., Linnell J.D.C., von Arx M., Huber D., Andrén H., López-Bao J.V., Adamec M., Álvares F., Anders O., Balčiauskas L., Balys V., Bedő P., Bego F., Blanco J.C., Breitenmoser U., Brøseth H., Bufka L., Bunikyte R., Ciucci P., Dutsov A., Engleder T., Fuxjäger C., Groff C., Holmala K., Hoxha B., Iliopoulos Y., Ionescu O., Jeremić J., Jerina K. et al. 2014. Recovery of large carnivores in Europe's modern human-dominated landscapes. Science 346(6216): 1517–1519. DOI: 10.1126/science.1257553
Ćirović D., de Gabriel Hernando M., Paunović M., Karamanlidis A.A. 2015. Home range, movements, and activity patterns of a brown bear in Serbia. Ursus 26(2): 79–85. DOI: 10.2192/ursus-d-15-00010
Clark J.D., van Manen F.T., Pelton M.R. 2005. Bait Stations, Hard Mast, and Black Bear Population Growth in Great Smoky Mountains National Park. Journal of Wildlife Management 69(4): 1633–1640. DOI: 10.2193/0022-541X(2005)69[1633:BSHMAB]2.0.CO;2
Dahle B., Swenson J.E. 2003. Home ranges in adult Scandinavian brown bears (Ursus arctos): Effect of mass, sex, reproductive category, population density and habitat type. Journal of Zoology 260(4): 329–335. DOI: 10.1017/s0952836903003753
Dahle B., Støen O.G., Swenson J.E. 2006. Factors influencing home-range size in subadult brown bears. Journal of Mammalogy 87(5): 859–865. DOI: 10.1644/05-MAMM-A-352R1.1
De Solla S.R., Bonduriansky R., Brooks R.J. 1999. Eliminating autocorrelation reduces biological relevance of home range estimates. Journal of Animal Ecology 68(2): 221–234. DOI: 10.1046/j.1365-2656.1999.00279.x
Delkov N. 1984. Dendrology [Dendrologiya]. (in Bulgarian). Sofia, Bulgaria: Zemizdat Press. 331 p.
Fležar U., Costa B., Bordjan D., Jerina K., Krofel M. 2019. Free food for everyone: artificial feeding of brown bears provides food for many non-target species. European Journal of Wildlife Research 65(1): 1. DOI: 10.1007/s10344-018-1237-3
Gavrilov G., Zlatanova D., Spasova V., Valchev K., Dutsov A. 2015. Home range and habitat use of brown bear in Bulgaria: The first data based on GPS-Telemetry. Acta Zoologica Bulgarica 67(4): 493–499.
Goodrum P.D., Reid V.H., Boyd C.E. 1971. Acorn yields, characteristics, and management criteria of oak for wildlife. Journal of Wildlife Management 35: 520–532.
Gunchev R.R. 1989. Research on the numbers, the biology and the ecology of the brown bear (Ursus arctos L.) in Stara Planina mountain. PhD Thesis. Sofia: High Forestry – Technical Institute. 128 p. [In Bulgarian]
Hertel A.G., Zedrosser A., Kindberg J., Langvall O., Swenson J.E. 2019. Fluctuating mast production does not drive Scandinavian brown bear behavior. Journal of Wildlife Management 83(3): 657–668. DOI: 10.1002/jwmg.21619
Huber D., Roth H.U. 1997. Denning of brown bears in Croatia. Bears: Their Biology and Management 9: 79–83. DOI: 10.2307/3872664
Hundeshagen J.C. 1826. Die Forstabschätzung auf neuen, wissenschaftlichen Grundlagen : nebst einer Charakteristik und Vergleichung aller bisher bestandenen Forsttaxations-Methoden. Tübingen: Laupp. 483 p.
Jerina K. 2012. Roads and supplemental feeding affect home-range size of Slovenian red deer more than natural factors. Journal of Mammalogy 93(4): 1139–1148. DOI: 10.1644/11-mamm-a-136.1
Jerina K., Krofel M., Stergar M., Videmšek U. 2012. Factors Affecting Brown Bear Habituation To Humans: a GPS Telemetry Study. Technical report. Ljubljana: University of Ljubljana. 18 p.
Jonkel J.J. 1993. A manual for handling bears for managers and researchers. Montana: U.S. Fish and Wildlife Service. 142 p.
Kaczensky P., Chapron G., von Arx M., Huber D., Andrén H., Linnell J (Eds). 2013. Status , management and distribution of large carnivores – bear , lynx , wolf & wolverine – in Europe. Part 2 (Country reports). European Commission Series. Available from /nature/conservation/species/carnivores/pdf/task_1_part2_species_country_reports.pdf.
Kavčič I., Adamič M., Kaczensky P., Krofel M., Jerina K. 2013. Supplemental feeding with carrion is not reducing brown bear depredations on sheep in Slovenia. Ursus 24(2): 111–119. DOI: 10.2192/URSUS-D-12-00031R1.1
Kavčič I., Adamič M., Kaczensky P., Krofel M., Kobal M., Jerina K. 2015. Fast food bears: brown bear diet in a human-dominated landscape with intensive supplemental feeding. Wildlife Biology 21(1): 1–8. DOI: 10.2981/wlb.00013
Koike S., Kozakai C., Nemoto Y., Masaki T., Yamazaki K., Abe S., Nakajima A., Umemura Y., Kaji K. 2012. Effect of Hard Mast Production on Foraging and Sex-Specific Behavior of the Asiatic Black Bear (Ursus thibetanus). Mammal Study 37(1): 21–28. DOI: 10.3106/041.037.0103
Kojola I., Heikkinen S. 2012. Problem brown bears Ursus arctos in Finland in relation to bear feeding for tourism purposes and the density of bears and humans. Wildlife Biology 18(3): 258–263. DOI: 10.2981/11-052
Kozakai C., Yamazaki K., Nemoto Y., Nakajima A., Koike S., Abe S., Masaki T., Kaji K. 2011. Effect of mast production on home range use of Japanese black bears. Journal of Wildlife Management 75(4): 867–875. DOI: 10.1002/jwmg.122
Kozakai C., Yamazaki K., Nemoto Y., Nakajima A., Umemura Y., Koike S., Goto Y., Kasai S., Abe S., Masaki T., Kaji K. 2013. Fluctuation of daily activity time budgets of Japanese black bears: relationship to sex, reproductive status, and hard-mast availability. Journal of Mammalogy 94(2): 351–360. DOI: 10.1644/11-mamm-a-246.1
Krofel M., Špacapan M., Jerina K. 2017. Winter sleep with room service: denning behaviour of brown bears with access to anthropogenic food. Journal of Zoology 302(1): 8–14. DOI: 10.1111/jzo.12421
Landers J.L., Hamilton R.J., Johnson A.S., Marchinton R.L. 1979. Foods and Habitat of Black Bears in Southeastern North Carolina. Journal of Wildlife Management 43(1): 143–153. DOI: 10.2307/3800645
LCIE. 2018. Policy Support Statements of the Large Carnivore Initiative for Europe (LCIE) – The use of artificial feeding as a management tool for large carnivore populations and their prey , with a particular emphasis on the brown bear. Large Carnivore Initiative for Europe. 2 p.
Linnell J.D.C., Swenson J.E., Andersen R., Barnes B. 2000. How vulnerable are denning bears to disturbance? Wildlife Society Bulletin 28(2): 400–413. DOI: 10.2307/3783698
Linnell J.D.C., Salvatori V., Boitani L. 2008. Guidelines for population level management plans for large carnivores in Europe. A Large Carnivore Initiative for Europe report prepared for the European Commission (contract 070501/2005/424162/MAR/B2). 83 p.
Linnell J.D.C., Cretois B., Nilsen E.B., Rolandsen C.M., Solberg E.J., Veiberg V., Kaczensky P., Van Moorter B., Panzacchi M., Rauset G.R., Kaltenborn B. 2020. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe's Anthropocene. Biological Conservation 244: 108500. DOI: 10.1016/j.biocon.2020.108500
Mattson D.J., Blanchard B.M., Knight R.R. 1992. Yellowstone Grizzly Bear Mortality, Human Habituation, and Whitebark Pine Seed Crops. Journal of Wildlife Management 56(3): 432–442. DOI: 10.2307/3808855
MAFF. 2001. Ministry of Agriculture, Food and Forestry. Regulation of Hunting and Game Conservation Act. Chapter four: Game management and conservation; Section I: Game management. Art. 51. Available from
Manchi S., Swenson J.E. 2005. Denning behaviour of Scandinavian brown bears Ursus arctos. Wildlife Biology 11(2): 123–132. DOI: 10.2981/0909-6396(2005)11[123:dbosbb];2
McLoughlin P.D., Ferguson S.H., Messier F. 2000. Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear population. Evolutionary Ecology 14(1): 39–60. DOI: 10.1023/A:1011019031766
Mitchell M.S., Powell R.A. 2003. Response of Black Bears to Forest Management in the Southern Appalachian Mountains. Journal of Wildlife Management 67(4): 692–705. DOI: 10.2307/3802676
MOEW. 2008. Action plan for the Brown bear in Bulgaria [English version]. Sofia, Bulgaria: Ministry of Environment and Waters series. 144 p.
Nagy J.A.S., Haroldson M.A. 1990. Comparisons of Some Home Range and Population Parameters among Four Grizzly Bear Populations in Canada. Ursus 8: 227–235.
Oka T., Miura S., Masaki T., Suzuki W., Osumi K., Saitoh S. 2004. Relationship Between Changes in Beechnut Production and Asiatic Black Bears in Northern Japan. Journal of Wildlife Management 68(4): 979–986. DOI: 10.2193/0022-541x(2004)068[0979:rbcibp];2
Ordiz A., Støen O.G., Sæbø S., Kindberg J., Delibes M., Swenson J.E. 2012. Do bears know they are being hunted? Biological Conservation 152: 21–28. DOI: 10.1016/j.biocon.2012.04.006
Pelchat B.O., Ruff R.L. 1986. Habitat and Spatial Relationships of Black Bears in Boreal Mixedwood Forest of Alberta. Ursus 6: 81–92.
Pigeon K.E., Cardinal E., Stenhouse G.B., Côté S.D. 2016. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection. Oecologia 181(4): 1101–1116. DOI: 10.1007/s00442-016-3630-5
Pop I.M., Bereczky L., Chiriac S., Iosif R., Nita A., Popescu V.D., Rozylowicz L. 2018. Movement ecology of brown bears (Ursus arctos) in the Romanian Eastern Carpathians. Nature Conservation 26: 15–31. DOI: 10.3897/natureconservation.26.22955
Powell R.A. 2000. Animal home ranges and territories and home range estimators. In: L. Boitani, T.K. Fuller (Eds.): Research technologies in animal ecology—controversies and consequences. New York, NY: Columbia University Press. P. 65–110.
Rigg R., Gorman M. 2005. Diet of brown bears (Ursus arctos): new results from the Tatras region and a comparison of research methods. In: Výskum a ochrana cicavcov na Slovensku. Vol. 7. P. 61–79.
Robb G.N., McDonald R.A., Chamberlain D.E., Bearhop S. 2008. Food for thought: Supplementary feeding as a driver of ecological change in avian populations. Frontiers in Ecology and the Environment 6(9): 476–484. DOI: 10.1890/060152
Samuel M.D., Pierce D.J., Garton E.O. 1985. Identifying Areas of Concentrated Use within the Home Range. Journal of Animal Ecology 54(3): 711–719. DOI: 10.2307/4373
Schwartz C.C., Haroldson M.A., White G.C., Harris R.B., Cherry S., Keating K.A., Moody D., Servheen C. 2006. Temporal, Spatial, and Environmental Influences on the Demographics of Grizzly Bears in the Greater Yellowstone Ecosystem. Wildlife Monographs 161: 1–68. DOI: 10.2193/0084-0173(2006)161[1:tsaeio];2
Seaman D.E., Powell R.A. 1990. Identifying Patterns and Intensity of Home Range Use. Ursus 8: 243–249.
Selva N., Berezowska-Cnota T., Elguero-Claramunt I. 2014. Unforeseen effects of supplementary feeding: Ungulate baiting sites as hotspots for ground-nest predation. PLoS ONE 9(3): e90740. DOI: 10.1371/journal.pone.0090740
Selva N., Teitelbaum C.S., Sergiel A., Zwijacz-Kozica T., Zięba F., Bojarska K., Mueller T. 2017. Supplementary ungulate feeding affects movement behavior of brown bears. Basic and Applied Ecology 24: 68–76. DOI: 10.1016/j.baae.2017.09.007
Seryodkin I.V., Paczkowski J., Borisov M.Y., Petrunenko Y.K. 2017. Home ranges of brown bears on the Kamchatka peninsula and Sakhalin Island. Contemporary Problems of Ecology 10(6): 599–611. DOI: 10.1134/S1995425517060129
Silvertown J.W. 1980. The evolutionary ecology of mast seeding in trees. Biological Journal of the Linnean Society 14(2): 235–250. DOI: 10.1111/j.1095-8312.1980.tb00107.x
Steyaert S.M.J.G., Kindberg J., Jerina K., Krofel M., Stergar M., Swenson J.E., Zedrosser A. 2014. Behavioral correlates of supplementary feeding of wildlife: Can general conclusions be drawn? Basic and Applied Ecology 15(8): 669–676. DOI: 10.1016/j.baae.2014.10.002
Steyaert S.M., Zedrosser A., Elfström M., Ordiz A., Leclerc M., Frank S.C., Kindberg J., Støen O.G., Brunberg S., Swenson J.E. 2016. Ecological implications from spatial patterns in human-caused brown bear mortality. Wildlife Biology 22(4): 144–152. DOI: 10.2981/wlb.00165
Štofik J., Merganič J., Merganičová K., Saniga M. 2013. Seasonal changes in food composition of the brown bear (Ursus arctos) from the edge of its occurrence – Eastern Carpathians (Slovakia). Folia Zoologica 62(3): 222–231. DOI: 10.25225/fozo.v62.i3.a8.2013
Stransky J.J., Roese J.H. 1984. Promoting soft mast for wildlife in intensively managed forests. Wildlife Society Bulletin 12(3): 234–239.
van Beeck Calkoen S.T.S., Mühlbauer L., Andrén H., Apollonio M., Balčiauskas L., Belotti E., Carranza J., Cottam J., Filli F., Gatiso T.T., Hetherington D., Karamanlidis A.A., Krofel M., Kuehl H.S., Linnell J.D.C., Müller J., Ozolins J., Premier J., Ranc N., Schmidt K., Zlatanova D., Bachmann M., Fonseca C., Ionescu O., Nyman M., Sprem N., Sunde P., Tannik M., Heurich M. 2020. Ungulate management in European national parks: Why a more integrated European policy is needed. Journal of Environmental Management 260: 110068. DOI: 10.1016/j.jenvman.2020.110068
Van Daele L.J., Barnes Jr V.G., Smith R.B. 1990. Denning characteristics of brown bears on Kodiak Island, Alaska. Bears: Their Biology and Management 8: 257–267.
Wall J. 2014. Movement Ecology Tools for ArcGIS (ArcMET). Version 10.3.1 v1.
Worton B.J. 1989. Kernel Methods for Estimating the Utilization Distribution in Home-Range Studies. Ecology 70(1): 164–168. DOI: 10.2307/1938423